Toggle light / dark theme

Researchers at Syracuse University, working with collaborators at the University of Wisconsin (UW)-Madison, have developed a new technique for measuring the state of quantum bits, or qubits, in a quantum computer.

Their findings are the subject of an article in Science magazine, which elaborates on the experimental efforts involved with creating such a technique.

The Plourde Group—led by Britton Plourde, professor of physics in Syracuse’s College of Arts and Sciences (A&S)—specializes in the fabrication of superconducting devices and their measurement at low temperatures.

Read more

Quantum computing ‘will enable us to predict and improve chemical reactions, new materials and their properties, as well as provide new understandings of spacetime and the emergence of our universe,’ the White House said.

Google, IBM, JPMorgan Chase & Co., and other key U.S. companies are set to attend a White House quantum computing meeting to be held on Monday, Reuters reports.

A groundbreaking technology still in its infancy, quantum computing could have a major impact on transportation, healthcare, communications, weather forecasting, artificial intelligence, and other areas. Quantum computing could, experts claim, revolutionize our society.

Read more

The transmission electron microscope was designed to break records. Using its beam of electrons, scientists have glimpsed many types of viruses for the first time. They’ve used it to study parts of biological cells like ribosomes and mitochondria. You can see individual atoms with it.

But experts have recently unlocked new potential for the machine. “It’s been a very dramatic and sudden shift,” says physicist David Muller of Cornell University. “It was a little bit like everyone was flying biplanes, and all of a sudden, here’s a jetliner.”

You’ve read your last complimentary article this month. To read the full article, SUBSCRIBE NOW. If you’re already a subscriber, please sign in and and verify your subscription.

Read more

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved nearly freely in a quark-gluon plasma. Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons.

In the current issue of Nature, an international team of scientists has presented an analysis of a series of experiments at major particle accelerators that sheds light on the nature of this transition. The scientists determined with precision the transition temperature and obtained new insights into the mechanism of cooling and freeze-out of the -gluon plasma into the current constituents of matter such as protons, neutrons and . The team of researchers consists of scientists from the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, and from the universities of Heidelberg and Münster (Germany), and Wroclaw (Poland).

A central result: The record-breaking high-energy experiments with the ALICE detector at the Large Hadron Collider (LHC) at the research center CERN produced matter in which particles and antiparticles coexisted in equal amounts, similar to the conditions in the . The team has confirmed via analysis of the experimental data theoretical predictions that the phase transition between and hadronic matter takes place at the temperature of 156 MeV, 120,000 times higher than that in the interior of the sun.

Read more

Electrons tend to avoid one another as they go about their business carrying current. But certain devices, cooled to near zero temperature, can coax these loner particles out of their shells. In extreme cases, electrons will interact in unusual ways, causing strange quantum entities to emerge.

Read more

At the latest TechCrunch Disrupt conference IBM provided a visionary speech on the future of compute using quantum computing. IBM Research COO Dario Gil gave a very cogent description of quantum computing and how it will change the computing landscape in the near future.

Quantum computing is a very complex and esoteric technology to try to explain to an audience of entrepreneurs and developers looking to raise money for the next Snapchat. Interestingly enough, there was a quantum computing start up at Disrupt, Rigetti Computing, pitching a quantum computing cloud service. IBM introduced its quantum computing cloud service in May 2016.

Read more

Quantum mechanics is expected to provide a consistent description of reality, even when recursively describing systems contained in each other. Here, the authors develop a variant of Wigner’s friend Gedankenexperiment where each of the current interpretations of QM fails in giving a consistent description.

Read more