Toggle light / dark theme

“PARADOX LOST: The Public Edition, by Marshall Barnes,” Oct 6, 2014.

This book is by internationally noted research and development engineer, Marshall Barnes, and is based on his special report for select members of the United States Congress on the coming reality of time travel, which is now here on the particle level. The only authoritative book on the subject of time travel, it scientifically answers all the issues around the topic, proves why paradoxes are impossible and why the world’s physicists have been so wrong about time travel for so long. Includes definitive analysis of errors by Stephen Hawking, Kip Thorne, Paul Davies, Tim Maudlin, among others. Answers Kurt Godel’s famous question of how can a past that hasn’t passed yet, be the past, and many other issues left unanswered by all other sources.

Among outstanding features, it details Marshall’s creation of the Verdrehung Fan™, the first time machine in the world, that is sending signals through traversable micro wormholes, as speculated could be possible in New Scientist magazine, May 20th, 2014. The Einstein related physics from which it works and how Marshall used it to defeat world famous Ronald Mallett in the race to build a time machine, is revealed as well as why Mallett is far less than the media has made him seem.

Easy to read but rich in detail, this book will be a challenge for scientist and non-scientist alike, with preconceived notions about the subject, as all cliches are dismantled and discarded, revealing stunning, hidden truths that are reached without ever taking a step off the path of known physics. This is the book for those wanting definitive answers backed by definitive proofs and calculations, without dealing with the heavy mathematics.

John Wheeler, who is mentor to many of today’s leading physicists, and the man who coined the term “black hole”, suggested that the nature of reality was revealed by the bizarre laws of quantum mechanics. According to the quantum theory, before the observation is made, a subatomic particle exists in several states, called a superposition (or, as Wheeler called it, a ‘smoky dragon’). Once the particle is observed, it instantaneously collapses into a single position (a process called ‘decoherence’).

Created as an analogy for Quantum Electrodynamics (QED) — which describes the interactions due to the electromagnetic force carried by photons — Quantum Chromodynamics (QCD) is the theory of physics that explains the interactions mediated by the strong force — one of the four fundamental forces of nature.

A new collection of papers published in The European Physical Journal Special Topics and edited by Diogo Boito, Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Brazil, and Irinel Caprini, Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest, Romania, brings together recent developments in the investigation of QCD.

The editors explain in a special introduction to the collection that due to a much stronger coupling in the — carried by gluons between quarks, forming the fundamental building blocks of matter — described by QCD, than the , the divergence of perturbation expansions in the mathematical descriptions of a system can have important physical consequences. The editors point out that this has become increasingly relevant with recent high-precision calculations in QCD, due to advances in the so-called higher-order loop computations.

In collaboration with an international team of researchers, Michigan State University (MSU) has helped create the world’s lightest version—or isotope—of magnesium to date.

Forged at the National Superconducting Cyclotron Laboratory at MSU, or NSCL, this isotope is so unstable that it falls apart before scientists can measure it directly. Yet this isotope that isn’t keen on existing can help researchers better understand how the atoms that define our existence are made.

Led by researchers from Peking University in China, the team included scientists from Washington University in St. Louis, MSU, and other institutions.

NTT, University of Tokyo and Riken aim for full-fledged system by 2030.

TOKYO — A Japanese team of scientists on Wednesday announced a key step in the development of a quantum computer using photons, or particles of light, that eliminates the need for an ultracold environment used to cool existing machines.

It’s probably in this weird particle.

In a recent study, scientists say they can explain dark matter by positing a particle that links to a fifth dimension.

While the “warped extra dimension” (WED) is a trademark of a popular physics model first introduced in 1999, this research, published in The European Physical Journal C, is the first to cohesively use the theory to explain the long-lasting dark matter problem within particle physics.

A Rice University-led study is forcing physicists to rethink superconductivity in uranium ditelluride, an A-list material in the worldwide race to create fault-tolerant quantum computers.

Uranium ditelluride crystals are believed to host a rare “spin-triplet” form of superconductivity, but puzzling experimental results published this week in Nature have upended the leading explanation of how the could arise in the material. Neutron-scattering experiments by physicists from Rice, Oak Ridge National Laboratory, the University of California, San Diego and the National High Magnetic Field Laboratory at Florida State University revealed telltale signs of antiferromagnetic spin fluctuations that were coupled to superconductivity in uranium ditelluride.

Spin-triplet superconductivity has not been observed in a solid-state material, but physicists have long suspected it arises from an ordered state that is ferromagnetic. The race to find spin-triplet materials has heated up in recent years due to their potential for hosting elusive quasiparticles called Majorana fermions that could be used to make error-free quantum computers.

So the bristle worm jaw is both metal-like and yet not. As Zelaya-Lainez puts it, “Here we are dealing with a completely different material, but interestingly, the metal atoms still provide strength and deformability there, just like in a piece of metal.”

Observing the creation of a metal-like material from biological processes is a bit of a surprise and may suggest new approaches to materials development. “Biology could serve as inspiration here,” says Hellmich, “for completely new kinds of materials. Perhaps it is even possible to produce high-performance materials in a biological way — much more efficiently and environmentally friendly than we manage today.”

Theoretical “lumps” called Q balls formed in the moments after the Big Bang.

One of the biggest cosmological mysteries is why the universe is made up of way more matter than antimatter, essentially why we exist. Now, a team of theoretical physicists says they know how to find the answer. All they need to do is detect the gravitational waves produced by bizarre quantum objects called Q balls.

Every kind of ordinary matter particle has an antimatter partner with opposing characteristics — and when matter interacts with antimatter, the two annihilate each other. That fact makes our existence a mystery, as cosmologists are pretty sure that at the dawn of the universe, equal amounts of matter and antimatter were produced; those matter and antimatter partners should have all annihilated each other, leaving the universe devoid of any matter at all. Yet matter exists, and researchers are slowly uncovering the reasons why.

Albert Einstein and Stephen Hawking – the most famous physicists of the twentieth century — both spent decades trying to find a single law that could explain how the world works on the scale of the atom and on the scale of galaxies. In short, the Standard Model describes the physics of the very small. General relativity describes the physics of the very large. The problem? The two theories tell different stories about the fundamental nature of reality. Einstein described the problem nearly a century ago in his 1923 Nobel lecture 0, telling the audience that a physicist who searches for, “an integrated theory cannot rest content with the assumption that there exist two distinct fields totally independent of each other by their nature.” Even while on his deathbed, Einstein worked on a way to unite all the laws of physics under one unifying theory.