Toggle light / dark theme

A nuclear power propulsion system could propel a spacecraft to Mars in just over a month, a huge step forward from the current 18 months required. Russia might test a nuclear engine as early as 2018, the head of the Rosatom nuclear corporation revealed.

Another advantage of a nuclear engine is that it enables a spacecraft to maneuver throughout the flight, whereas existing technology only makes a defined trajectory flight possible.

Read more

This will make friends Vladimir and Marina happy.


Mushrooms and game meat in European regions where Chernobyl fallout was most intense still have excess radiation, but Burgundy truffles get the green light; foodies rejoice.

It’s been 30 years since the 1986 nuclear disaster in Ukraine in which a fire and explosion at the Chernobyl Nuclear Power Plant unleashed a slew of radioactive particles into the atmosphere. Swept along by winds and settled by heavy rains, radioactive particles, especially caesium-137 (137Cs), polluted large stretches of the European continent. And we all know the problem with radioactive things, they’ve got lasting power.

“Much of the continent’s topsoil layers are still radioactively contaminated,” says Ulf Büntgen, Head of the Dendroecology Group at the Swiss Federal Research Institute (WSL) and lead author of a new study measuring something dear to a foodie’s heart: the contamination level of Burgundy truffles (Tuber aestivum), like those pictured below.

Read more

82% of Energy Industry (power grids, nuclear, solar, gas, etc.) say that a Cyber Attack Could Cause Physical Damage — and they didn’t highlight those on some sort of life support or machine to help patients, etc. to live.


According to the results of a recent Tripwire survey of more than 150 IT professionals in the energy, utilities, and oil and gas industries, 82 percent of respondents said a cyber attack on operational technology (OT) in their organization could cause physical damage.

The survey, conducted in November 2015 by Dimensional Research, also found that almost 60 percent of respondents said they aren’t able to track all the threats targeting their OT networks, either because they don’t have the visibility necessary to track all threats (16.2 percent), because they only track threats that directly target their department (8.1 percent) or because there are just too many threats (35.4 percent).

“After hundreds of years protecting our nation’s geographic borders, it is sobering to note that possibly the most vulnerable frontier happens to be the infrastructure that runs the largest companies in the country,” Rekha Shenoy, vice president and general manager of industrial IT cyber security for Tripwire parent company Belden, said in a statement.

Read more

One way or another, via government research or the countless new startups, fusion is well on it’s way.


Chinese scientists have managed to create a hydrogen gas that is three times hotter than the sun.

The artificial solar energy could eventually be used as an inexhaustible source of power, ending reliance on fossil fuels and solving the world energy crisis.

Chinese boffins created the gas in a huge magnetic fusion reactor at the Institute of Physical Science in Hefei.

Read more

Just last week, we reported that Germany’s revolutionary nuclear fusion machine managed to heat hydrogen gas to 80 million degrees Celsius, and sustain a cloud of hydrogen plasma for a quarter of a second. This was a huge milestone in the decades-long pursuit of controlled nuclear fusion, because if we can produce and hold onto hydrogen plasma for a certain period, we can harness the clean, practically limitless energy that fuels our Sun.

Now physicists in China have announced that their own nuclear fusion machine, called the Experimental Advanced Superconducting Tokamak (EAST), has produced hydrogen plasma at 49.999 million degrees Celsius, and held onto it for an impressive 102 seconds.

While this is nowhere near the hottest temperature that’s been produced by an experiment — that honour goes to the Large Hadron Collider, which hit a whopping 4 trillion degrees Celsius (250,000 times hotter than the centre of the Sun) back in 2012 — the team from China’s Institute of Physical Science in Hefei managed to recreate solar conditions for well over a minute.

Read more

As oil was to Saudi Arabia, could solar be to Morocco?


Morocco has turned on its enormous solar power plant in the town of Ourrzazate, on the edge of the Saharan desert. The plant already spans thousands of acres and is proficient of generating up to 160 megawatts of power. It’s already one of the largest solar power grids in the world, capable of being seen from space. And it’s only going to get bigger.

The present grid, called Noor I, is just the first phase of a planned project to bring renewable energy to millions living in Morocco. It will soon be followed by expansions, Noor II and Noor III, that will add even more mirrors to the present plant. Once the project is finished around 2018, the whole grid will cover 6,000 acres. It will be capable of producing up to 580 megawatts of power, comparable to that of a small nuclear reactor.

Read more

German scientists today will set about the first steps towards what has become the Holy Grail of energy—nuclear fusion, which has the potential for unlimited amounts of clean power. There are a number of challenges to harnessing this power —researchers need to build a device that can heat atoms to temperatures of more than 100 million °C (180 million °F).

After almost nine years of construction work and more than a million assembly hours, researchers from the Max Planck Institute in Greifswald are set to do just that by heating a tiny amount of hydrogen until it becomes as hot, hopefully, as the center of the Sun.

Researchers are keen to tap into the incredible amount of energy released when atoms join together at extremely high temperatures in the super-hot gas known as plasma. Today’s test will not produce any energy, just the plasma—a different state of matter created at extremely high temperatures. German chancellor Angela Merkel, who has a doctorate in physics, will reportedly attend.

Read more

Excellent news!


Physicists in Germany have used an experimental nuclear fusion device to produce hydrogen plasma in a process similar to what happens on the Sun. The test marks an important milestone on the road towards this super-futuristic source of cheap and clean nuclear energy.

Earlier today in an event attended by German Chancellor Angela Merkel (herself a PhD physicist), researchers from the Max Planck Institute in Greifswald turned on the Wendelstein 7-X stellarator, an experimental nuclear fusion reactor. (Actually, the researchers let Merkel do the honors.) This €400 million ($435 million) stellarator is being used by physicists to test the technical viability of a future fusion reactor.

Unlike nuclear fission, in which the nucleus of an atom is split into smaller parts, nuclear fusion creates a single heavy nucleus from two lighter nuclei. The resulting change in mass produces a massive amount of energy that physicists believe can be harnessed into a viable source of clean energy.

Read more

GREIFSWALD, Germany (AP) — Scientists are poised to flip the switch on an experiment that could take them a step closer to the goal of generating clean and cheap nuclear power.

Read more