Toggle light / dark theme

For over 11 decades we have known that matter and energy are interchangeable. The development of nuclear power has shown us that matter can be converted into energy, but converting energy into matter has so far proven a lot more difficult.

The battlefield for such an achievement is at the end of the most powerful lasers ever envisioned, currently being planned and built in a number of different countries. Three projects top the “gone to watch list” of the laser world, prepared by the journal Science. They are China’s Station of Extreme Light (SEL), Russia’s Exawatt Center for Extreme Light Studies (XCELS), and the Department of Energy’s Optical Parametric Amplifier Line (OPAL).

These three lasers are planned to completely annihilate the current record for laser power, which is 5.3 million billion watts or 5.3 petawatts (PW) and obtained by Ruxin Li and colleagues at the Shanghai Superintense Ultrafast Laser Facility (SULF). Li is also behind SEL and hopes that by 2023 his team could reach the goal of a 100-PW laser.

Read more

It doesn’t exist officially. It uses highly pressured mercury accelerated by nuclear energy to produce a plasma that creates a field of anti-gravity around the ship. Conventional thrusters located at the tips of the craft allow it to perform all manner of rapid high speed maneuvers along all three axes. Interestingly, the plasma generated also reduces radar signature significantly. So it’ll be almost invisible on radar & remain undetected. This literally means that it can go to any country it likes without being detected by air traffic control & air defence systems.

Read more

Machine learning (ML), a form of artificial intelligence that recognizes faces, understands language and navigates self-driving cars, can help bring to Earth the clean fusion energy that lights the sun and stars. Researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) are using ML to create a model for rapid control of plasma—the state of matter composed of free electrons and atomic nuclei, or ions—that fuels fusion reactions.

The sun and most stars are giant balls of plasma that undergo constant reactions. Here on Earth, scientists must heat and control the plasma to cause the particles to fuse and release their energy. PPPL research shows that ML can facilitate such control.

Read more

Against all probability, a device that purports to use cold fusion to generate vast amounts of power has been verified by a panel of independent scientists. The research paper, which hasn’t yet undergone peer review, seems to confirm both the existence of cold fusion, and its potency: The cold fusion device being tested has roughly 10,000 times the energy density and 1,000 times the power density of gasoline. Even allowing for a massively conservative margin of error, the scientists say that the cold fusion device they tested is 10 times more powerful than gasoline — which is currently the best fuel readily available to mankind.

The device being tested, which is called the Energy Catalyzer (E-Cat for short), was created by Andrea Rossi has been claiming for the past two years that he had finally cracked cold fusion, but much to the chagrin of the scientific community he hasn’t allowed anyone to independently analyze the device — until now. While it sounds like the scientists had a fairly free rein while testing the E-Cat, we should stress that they still don’t know exactly what’s going on inside the sealed steel cylinder reactor. Still, the seven scientists, all from good European universities, obviously felt confident enough with their findings to publish the research paper.

LNER (cold fusion) hydrogen/nickel lattice

As for what’s happening inside the cold fusion reactor, Andrea Rossi and his colleague Sergio Focardi have previously said their device works by infusing hydrogen into nickel, transmuting the nickel into copper and releasing a large amount of heat. While Rossi hasn’t provided much in the way of details — he’s a very secretive man, it seems — we can infer some knowledge from NASA’s own research into cold fusion. Basically, hydrogen ions (single protons) are sucked into a nickel lattice (pictured right); the nickel’s electrons are forced into the hydrogen to produce neutrons; the nickel nuclei absorb these neutrons; the neutrons are stripped of their electrons to become protons; and thus the nickel goes up in atomic number from 28 to 29, becoming copper.

Read more

ARPA-E-funded alternative z-pinch fusion which is being developed by Zap Energy.

Zap Energy is the most compact solution to Fusion Energy and does not use complex and costly magnetic coils. They surpassed ARPA-E Alpha Milestones in August 2018. Their reactor is consistently producing neutrons and they received $6.8 million ARPA-E OPEN funding.

The new Z-pinch has the simplest geometry of any magnetic confinement configuration. It is a cylindrical plasma column.

Read more

Scientists discover source of clean, unlimited energy! In March 1989, the news rocked the world. Two respected chemists from the University of Utah: Martin Fleischmann and Stanley Pons, told a receptive media they had solved the biggest physics problem of the atomic age. Their compelling claims of room-temperature nuclear fusion in a jar were cast as the solution to the world’s colliding environmental and energy crises.

The meltdown hit just weeks later when the claim was nuked by mainstream scientists who couldn’t reproduce their results and were unsatisfied with the team’s explanations. The cold fusion field has been on ice ever since. Whether considered a scandal, a screw-up, or a scientific character assassination by hot fusion advocates, the cold fusion episode is a case study for those who caution against the “science of wishful thinking.”

On the 25th anniversary of the rise and fall of cold fusion, its close cousin, low-energy nuclear reaction (LENR) science, is still on the fringe but simmering anew. Here’s a look back and a look ahead at a field that always gets a reaction.

Read more