Toggle light / dark theme

REMINDER: DARPA’s Neural Engineering System Design (NESD) Program Proposers Days is tomorrow and Wed. (February 2–3, 2016) at The Westin Gateway Hotel, 801 N. Glebe Road, Arlington, VA 22203. This is part of the Brain Mind Interface development work. Good thing that the research on Graphene came out recently showing that it is a viable substance for BMIs.


Users of assistive technologies such as screen readers should use the following link to activate Accessibility Mode before continuing: Learn more and Activate accessibility mode.

Read more

I do believe that there will be a need (especially in certain fields) for humans to BMI technology. I believe over time that this technology will become less and less of an invasive procedure and can even be controlled by the individual to be on or off.


The agency is working on a neural interface that will allow data to be transferred between the brain and digital world.

Read more

Russia’s new mind control exoskeleton.


THE era of the ‘robo-soldier’ is nearing as Russia claims to be perfecting machines that will revolutionise warfare.

Read more

Elon Musk, CEO of Space Exploration Technologies (SpaceX) and Tesla Motors, Inc, was at Startmeup Hong Kong and talked about what he thought were areas of technological opportunity.

At 37 minutes into this video Elon Musk talks about high potential technology like Hyperloop which he currently does not have time to address electric aircraftgenetics is thorny but is our best shot at many tough diseasesbrain computer interfaces at the neuron level has potential for intelligence augmentationNeural Lace was mentioned.

Scientists from China and the US have found a pioneering way to inject a tiny electronic mesh sensor into the brain that fully integrates with cerebral matter and enables computers to monitor brain activity.

Researchers from Harvard and the National Center for Nanoscience and Technology in Beijing have succeeded in inventing a flexible electrical circuit that fits inside a 0.1mm-diameter glass syringe in a water-based solution.

This tiny electronic mesh sensor is thin and flexible enough to be injected into the brain and gentle enough to integrate fully with brain cells, making human cyborgs a possibilityLieber Research Group, Harvard University

When injected into the brains of mice, the mesh unfurled to 30 times its size and mouse brain cells grew around the mesh, forming connections with the wires in the flexible mesh circuit. The biochemical mouse brain completely accepted the mechanical component and integrated with it without any damage being caused to the mouse.

Read more

One key question can it help control Glioblastoma.


A new “wearable” device being tested to suppress brain-cancer cell growth in patients ended its clinical trials early with positive results. Optune is a battery powered device researchers claim will extend the life of a patient with “newly diagnosed glioblastoma” when it is paired with traditional temozolomide chemotherapy. Researches were confident enough in its effectiveness to end the clinical trials (which ran from July 2009 to November 2014) of the device early. The device is likely not “the cure for cancer,” but it is a step forward in extending the life expectancy of brain-cancer patients and more research will be needed to see if it may be effective on other forms of cancer.

“With this new data, it appears the tumor-treating fields should be used upfront and become a standard of care. We should add this modality to what we’re currently doing for our patients,” said Dr. Maciej Mrugala, a brain-cancer specialist who led UW Medicine’s participation in the clinical trial.

“You get almost five months’ survival benefit. It may not sound like a lot, but if you’re living with this diagnosis, this is a meaningful improvement,” said Mrugala. UW Medicine was one of the first 15 U.S. providers to employ the novel tumor-treating therapy; now there are more than 200.

Glioblastoma multiforme is the most common primary brain tumor and a highly aggressive cancer. The Optune device, manufactured by Novocure, disrupts cancer-cell reproduction by sending alternating positive and negative charges between small ceramic discs embedded in on four sides of the mesh cap.

Read more

Researchers at Harvard are working to identify the brain processes that make humans so good at recognising patterns. Their ultimate goals is to develop biologically-inspired computer systems for smarter AI. Computers inspired by the human brain could be used to detect network invasions, read MRI images, and even drive cars.

Their ultimate goals is to develop biologically-inspired computer systems for smarter AI.

Read more

An experiment by University of Washington researchers is setting the stage for advances in mind reading technology. Using brain implants and sophisticated software, researchers can now predict what their subjects are seeing with startling speed and accuracy.

The ability to view a two-dimensional image on a page or computer screen, and then transform that image into something our minds can immediately recognize, is a neurological process that remains mysterious to scientists. To learn more about how our brains perform this task—and to see if computers can collect and predict what a person is seeing in real time—a research team led by University of Washington neuroscientist Rajesh Rao and neurosurgeon Jeff Ojermann demonstrated that it’s possible to decode human brain signals at nearly the speed of perception. The details of their work can be found in a new paper in PLOS Computational Biology.

The team sought the assistance of seven patients undergoing treatment for epilepsy. Medications weren’t helping alleviate their seizures, so these patients were given temporary brain implants, and electrodes were used to pinpoint the focal points of their seizures. The UW researchers saw this as an opportunity to perform their experiment. “They were going to get the electrodes no matter what,” noted Ojermann in a UW NewsBeat article. “We were just giving them additional tasks to do during their hospital stay while they are otherwise just waiting around.”

Read more

Researchers have successfully demonstrated how it is possible to interface graphene — a two-dimensional form of carbon — with neurons, or nerve cells, while maintaining the integrity of these vital cells. The work may be used to build graphene-based electrodes that can safely be implanted in the brain, offering promise for the restoration of sensory functions for amputee or paralysed patients, or for individuals with motor disorders such as epilepsy or Parkinson’s disease.

Read more

(draft)

We’ve just posted a proposed definition of the notion of a technological singularity in our blog. Please comment freely.

Synopsis: Careful expositions of a technological singularity anticipated by the mid-21st century can be uniquely described using three common characteristics: superintelligence, acceleration, and discontinuity.

Read more