He is making a new to torsion balance. It is a pendulum-type balance that measures the amount of torque applied to the axis of the pendulum. Tajmar’s team used a laser interferometer to measure the physical displacement of the balance scales. The new torsion scale has a nano-newton resolution and supports thrusters weighing several pounds, making it the most sensitive thrust balance in existence.
Category: nanotechnology
By Sam Wong
Carbon nanotubes have turned up in the lungs of children living in Paris – the first time they have been detected in humans.
Incredibly strong, light and conductive, nanotubes have shown great potential in areas such as computing, clothing and healthcare technology. Nevertheless, there has been some concern over their use after mouse studies showed that injected nanotubes can cause immune reactions similar to those produced by asbestos.
The way information travels inside the cells of our bodies is not unlike the wiring inside a computer chip, according to a new study that has unveiled the intricate workings of a network of calcium ions as intracellular messengers.
According to researchers from the University of Edinburgh in the UK, this “cell-wide web” uses a microscopic network of guides to transmit information across nanoscale distances and carry activities and instructions for the cells to perform — such as relaxing or contracting muscles, for example.
Calcium ions (Ca2+) are a fundamental part of the messaging system of our cells, and their signals are crucial for a wide variety of jobs, including cell growth, death, and movement. Now researchers have taken an unprecedented close look at just how calcium ions shuttle messages within the cell.
Dr. Hadiyah-Nicole Green is one of fewer than 100 black female physicists in the country, and the recent winner of $1.1 million grant to further develop a technology she’s pioneered that uses laser-activated nanoparticles to treat cancer.
Green, who lost her parents young, was raised by her aunt and uncle. While still at school, her aunt died from cancer, and three months later her uncle was diagnosed with cancer, too. Green went on to earn her degree in physics at Alabama A&M University, being crowned Homecoming Queen while she was at it, before going on full scholarship to University of Alabama in Birmingham to earn her Masters and Ph.D. There Green would become the first to work out how to deliver nanoparticles into cancer cells exclusively, so that a laser could be used to remove them, and then successfully carry out her treatment on living animals.
As she takes on her growing responsibilities, Green still makes time to speak at schools, Boys & Girls Clubs and other youth events. “Young black girls don’t see those role models (scientists) as often as they see Beyonce or Nicki Minaj,” says Green. “It’s important to know that our brains are capable of more.”
The ability to confine water in an enclosed compartment without directly manipulating it or using rigid containers is an attractive possibility. In a recent study, Sara Coppola and an interdisciplinary research team in the departments of Biomaterials, Intelligent systems, Industrial Production Engineering and Advanced Biomaterials for Healthcare in Italy, proposed a water-based, bottom-up approach to encase facile, short-lived water silhouettes in a custom-made adaptive suit.
In the work, they used a biocompatible polymer that could self-assemble with unprecedented degrees of freedom on the water surface to produce a thin membrane. They custom designed the polymer film as an external container of a liquid core or as a free-standing layer. The scientists characterized the physical properties and morphology of the membrane and proposed a variety of applications for the phenomenon from the nanoscale to the macroscale. The process could encapsulate cells or microorganisms successfully without harm, opening the way to a breakthrough approach applicable for organ-on-a-chip and lab-in-a-drop experiments. The results are now published in Science Advances.
The possibility of isolating, engineering and shaping materials into 2-D or 3D objects from the nanometer to the microscale via bottom-up engineering is gaining importance in materials science. Understanding the physics and chemistry of materials will allow a variety of applications in microelectronics, drug delivery, forensics, archeology and paleontology and space research. Materials scientists use a variety of technical methods for microfabrication including two-photon polymerization, soft interference lithography, replica molding and self-folding polymers to shape and isolate the material of interest. However, most materials engineering protocols require chemical and physical pretreatments to gain the desired final properties.
Extremely happy to be able to already share with you the two videos from our last salon🚀! We gathered not one but three individuals who have been pre-eminent luminaries in their fields for 30 years to discuss their alternative approaches to the current AI paradigm: Kim Eric Drexler, Robin Hanson, and Mark S. Miller.
Allison Duettmann (Foresight Institute) discusses alternative approaches to the current AI paradigm with three individuals who have been pre-eminent luminaries in their fields for 30 years: Eric Drexler, Robin Hanson, and Mark S. Miller.
Eric Drexler:
Drexler is widely known for his seminal studies of advanced nanosystems and scalable atomically precise manufacturing (APM), a prospective technology using arrays of nanoscale devices to guide chemically-reactive molecular encounters, thereby structuring matter from the bottom up. Drexler’s current research explores prospects for advanced AI technologies from the perspective of structured systems development, potential applications, and global implications. Key considerations in this work include advances in AI-enabled automation of AI research and development, and the potential role of thorough automation in accelerated development of comprehensive AI services.
Mark S. Miller:
Mark S. Miller is a pioneer of agoric (market-based secure distributed) computing and smart contracts, the main designer of the E and Dr. SES distributed persistent object-capability programming languages, inventor of Miller Columns, an architect of the Xanadu hypertext publishing system, a representative to the EcmaScript committee, a former Google research scientist and member of the WebAssembly (Wasm) group, and a senior fellow of the Foresight Institute. Eric and Mark co-authored the Agoric Papers, which have recently received substantial attention in the cryptocommerce community, 30 years after their initial release: https://agoric.com/assets/pdf/papers/markets-and-computation-agoric-open-systems.pdf
Robin Hanson:
Robin Hanson is associate professor of economics at George Mason University and research associate at the Future of Humanity Institute of Oxford University Press published his book The Age of Em: Work, Love and Life When Robots Rule the Earth in June 2016, and his book The Elephant in the Brain: Hidden Motives in Everyday Life, co-authored with Kevin Simler, in January, 2018. Professor Hanson has 900 media mentions, given 350 invited talks, and his blog OvercomingBias.com has had eight million visits. He has pioneered prediction markets since 1988 and suggests “futarchy”, a form of governance based on prediction markets. He was a principal architect of the first internal corporate markets, at Xanadu, of the first web markets, the Foresight Exchange, of DARPA’s Policy Analysis Market, and of IARPA’s combinatorial markets DAGGRE and SCICAST. He coined the phrase “The Great Filter” as part of an effort to understand why the universe looks so dead.
Tiny selenium particles could have a therapeutic effect on ischemic brain strokes by promoting the recovery of brain damage. Pharmacologists, including Alireza Mashaghi from the Leiden Academic Centre for Drug Research discovered that selenium nanoparticles inhibit molecular mechanisms that are responsible for the loss of brain cells after a stroke. The results were published in Nature Scientific Reports in April.
Nanoparticles against strokes
An ischemic stroke happens when a supplying blood vessel to the brain is narrowed or obstructed. As a result, the brain gets too little blood. “This lack of blood can lead to brain tissue damage due to cellular toxicity, inflammation and cell death,” Mashaghi explains. “This will, in turn, lead to brain dysfunction and neurological complaints such as numbness, vision problems, dizziness and severed headache.” Ischemic stroke accounts for 87% of all strokes and is a significant cause of death. “So far, no neuroprotective agents have been shown to produce any measurable improvement in health in cerebral stroke cases. Our results now demonstrated that selenium nanoparticles inhibit molecular mechanisms that are responsible for the loss of brain cells after a stroke.”