Toggle light / dark theme

With a glass and metal design reminiscent of the Galaxy S6, it could prove pretty popular.

It’s actually quite difficult to buy a phone these days that isn’t a buttonless smartphone — leaving people who prefer a physical keyboard (they still exist, as the Blackberry Priv shows) without many options.

The market for this phone might be fairly niche, but if it satisfies users’ nostalgia and actually works it could be a success.

Read more

Welcome to #24 Avatar Technology Digest! We provide you with the latest news on Technology, Medical Cybernetics and Artificial Intelligence the best way we can. Here are the top stories of the last week!

1) Did you know that Disney does more than shoot box office hits and sell toys to your kids? They also have a very active Research Department that specializes in a variety of applications that can be used throughout the Disney empire. And now another interesting innovation has come out of the Research Department, as they have developed a method for generating those 3D printable robots without the need for time and energy-consuming work at all.

2) Being able to identify problems with a person’s body without subjecting them to invasive procedures is the fantasy of all Star Trek doctors. There’s even a prize offering a fortune to anyone who can effectively recreate the tricorder technology out in the real world. Now, Stanford scientists think that they’ve developed a system that, in time, could be used to spot cancerous tumors from a foot away.

3) Technology is all around us, but what happened to the robots we dreamed of as kids? The ones who could be our friends and members of our family. The robots who were as smart as our smart phone, but could walk and talk and learn and engage with us, in a way no smart phone ever could. We think the Human-like household robot Alpha 2 by Ubtech Robotics could finally be that robot, and with your support, we can make Alpha 2 a reality.

4) Imagine playing a virtual-reality boxing game, complete with a menacing opponent aiming a haymaker at your head. You get your gloves up in time to block the punch, but you feel no impact when it hits, breaking the otherwise immersive experience.
Researchers in Germany have developed Visual reality technology for an armband that lets you feel impact from virtual interactions.

TV Anchor: Olesya Yermakova @olesyayermakova
Video: Vladimir Shlykov www.GetYourMedia.ru
Hair&Make-up: Nataliya Starovoytova

Read more

Because of its unique chemical and physical properties, graphene has helped scientists design new gadgets from tiny computer chips to salt water filters. Now a team of researchers from MIT has found a new use for the 2D wonder material: in infrared sensors that could replace bulky night-vision goggles, or even add night vision capabilities to high-tech windshields or smartphone cameras. The study was published last week in Nano Letters.

Night vision technology picks up on infrared wavelengths, energy usually emitted in the form of heat that humans can’t see with the naked eye. Researchers have known for years that because of how it conducts electricity, graphene is an excellent infrared detector, and they wanted to see if they could create something less bulky than current night-vision goggles. These goggles rely on cryogenic cooling to reduce the amount of excess heat that might muddle the image. To create the sensor, the researchers integrated graphene with tiny silicon-based devices called MEMS. Then, they suspended this chip over an air pocket so that it picks up on incoming heat and eliminates the need for the cooling mechanisms found in other infrared-sensing devices. That signal is then transmitted to another part of the device that creates a visible image. When the researchers tested their sensor, they found that it clearly and successfully picked up the image of a human hand.

Read more

Taiwanese PC manufacturer Asus says it’s building an augmented reality device and aims to release it next year. According to a report from CNET, Asus CEO Jerry Shen confirmed the plans during an earnings call on Wednesday, arguing that augmented reality or AR will be more useful than virtual reality. “You can make a real setting meld together with yourself and the AR portion,” said Shen. “Internally, we are talking about how to prepare.”

Unlike VR, augmented reality doesn’t show you a completely fabricated view, but instead overlays digital elements onto the real world. The current frontrunner in this nascent field is Microsoft’s HoloLens, which the company has shown off in a range of impressive demos. However, the HoloLens is hampered by a number of problems, including bulkiness, constrained viewing angles, and a high price tag, with Microsoft releasing a $3,000 HoloLens developer kit in the first quarter of 2016. (By comparison, Samsung’s Gear VR, a virtual reality headset powered by the company’s smartphones, became available for preorder this week for just $99.) Asus has previously hinted that it might build its own version of the HoloLens, but as a company best known for its budget laptops, tablets, and smartphones, we wouldn’t expect it to match Microsoft’s price.

Despite the lack of unknowns surrounding Asus’s announcement, it’s still interesting to see a company align itself with augmented, rather than virtual, reality. The Verge’s Adi Robertson has argued that the complete immersion of VR makes it difficult for multitasking, and that augmented reality, by comparison, is more practical. Asus apparently agrees. “We think AR will be very important for people’s lives,” said Shen according to CNET. “It should be next year when we come out with a product.”

Read more

Smartphones, laptops, and all manner of electronics have advanced by leaps in bounds over the past few decades, but an essential component of most of them — the battery, or more precisely the lithium-ion battery — hasn’t. The technological remnant of the mid-’90s has a tendency to degrade and isn’t particularly efficient, which is why scores of researchers have spent years pursuing alternatives. Until now, though, practical limitations — i.e., physical dimensions and mass manufacturing constraints — have permanently relegated many to laboratories. But a new design, a refinement of so-called lithium-air design by scientists at the University of Cambridge, looks to be one of the most feasible yet.

Lithium-air (Li-air) batteries have been around for a while — chemist K. M. Abraham is credited with developing the first rechargeable variant in 1995 — but they’ve never been considered very practical. That’s because they use carbon as an electron conductor instead of the metal-oxide found in conventional Li-ion batteries, and generate electricity from the reaction of oxygen molecules and lithium molecules, a process which leads to the production of electrically resistant lithium peroxide. As the lithium peroxide builds up, the power-producing reaction diminishes until it eventually ceases completely.

Related: Why batteries suck, and the new tech that might supercharge them.

Read more

NASA’s announcement in late September that it found evidence of flowing water on Mars was only the beginning of the revelations that will be the result of its current Mars mission. The organization’s exploratory mission carried out by the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft began with the intention of examining Mars’ atmosphere to an extent that had never before been possible, and now NASA is about to reveal what it is calling key science findings on the “fate Mars’ atmosphere.”

MUST READ: The first thing everyone needs to do with a new iPhone 6s

NASA is being very tight-lipped about its upcoming announcements, which are scheduled to be made beginning at 2:00 p.m. EST / 11:00 a.m. PST on Thursday, November 5th. If you’re interested in NASA’s current mission though — and you certainly should be — you’ll be able to find out what NASA has in store for us the very same moment that the rest of the world does, because NASA will broadcast its special news conference live on the web.

Read more

A new lithium-air battery created by researchers at the University of Cambridge points the way to the ultimate battery packs of the future, its makers say. With a very high energy density, more than 90 percent efficiency and the capability for more than 2,000 recharge cycles, the new test battery could prove an important stepping stone in the development of this essential technology.

If you’re getting tired of announcements about breakthroughs in battery technology, that’s understandable: as they’re so essential to modern life, many teams of scientists are busy working on the problem around the clock, but it’s an incredibly complex area of chemistry. Any new battery has to improve on what we already have, be safe to use in consumer gadgets, and be commercially viable enough to be affordable for manufacturers.

Those are difficult targets to hit, and that’s why many ‘miracle’ batteries have since fallen by the wayside – once the initial lab work is done, proving concepts and scaling up production is very difficult to get right. The potential rewards are huge though, not just for smartphones but for electric cars and solar power, where batteries are essential for storing energy to use when the sun isn’t shining.

Read more