Toggle light / dark theme

Microscopically fine conductor paths are required on the surfaces of smartphone touchscreens. At the edges of the appliances, these microscopic circuit paths come together to form larger connective pads. Until now, these different conductive paths had to be manufactured in several steps in time-consuming processes. With photochemical metallization, this is now possible in one single step on flexible substrates. The process has several benefits: It is fast, flexible, variable in size, inexpensive and environmentally friendly. Additional process steps for post-treatment are not necessary.

For the new process, the foils are coated with a photoactive layer of . “After that, we apply a colorless, UV-stable silver compound,” Peter William de Oliveira, head of optical materials, explains. By irradiation of this sequence of layers, the silver compound disintegrates on the photoactive layer and the silver ions are reduced to form metallic, electrically conductive silver. In this way, paths of varying sizes down to the smallest size of a thousandth of a millimeter can be achieved.

This basic principle allows conductive paths to be created individually. “There are different possibilities we can use depending on the requirements: Writing conductive paths using UV lasers is particularly suitable for the initial customized prototype manufacture and testing a new design of the conductive path. However, for mass production, this method is too time-consuming,” de Oliveira explains.

Read more

Four years ago, Google started to see the real potential for deploying neural networks to support a large number of new services. During that time it was also clear that, given the existing hardware, if people did voice searches for three minutes per day or dictated to their phone for short periods, Google would have to double the number of datacenters just to run machine learning models.

The need for a new architectural approach was clear, Google distinguished hardware engineer, Norman Jouppi, tells The Next Platform, but it required some radical thinking. As it turns out, that’s exactly what he is known for. One of the chief architects of the MIPS processor, Jouppi has pioneered new technologies in memory systems and is one of the most recognized names in microprocessor design. When he joined Google over three years ago, there were several options on the table for an inference chip to churn services out from models trained on Google’s CPU and GPU hybrid machines for deep learning but ultimately Jouppi says he never excepted to return back to what is essentially a CISC device.

We are, of course, talking about Google’s Tensor Processing Unit (TPU), which has not been described in much detail or benchmarked thoroughly until this week. Today, Google released an exhaustive comparison of the TPU’s performance and efficiencies compared with Haswell CPUs and Nvidia Tesla K80 GPUs. We will cover that in more detail in a separate article so we can devote time to an in-depth exploration of just what’s inside the Google TPU to give it such a leg up on other hardware for deep learning inference. You can take a look at the full paper, which was just released, and read on for what we were able to glean from Jouppi that the paper doesn’t reveal.

Read more

Taking a cue from the Marvel Universe, researchers report that they have developed a self-healing polymeric material with an eye toward electronics and soft robotics that can repair themselves. The material is stretchable and transparent, conducts ions to generate current and could one day help your broken smartphone go back together again.

The researchers will present their work today at the 253rd National Meeting & Exposition of the American Chemical Society (ACS).

“When I was young, my idol was Wolverine from the X-Men,” Chao Wang, Ph.D., says. “He could save the world, but only because he could heal himself. A self-healing material, when carved into two parts, can go back together like nothing has happened, just like our human skin. I’ve been researching making a self-healing lithium ion battery, so when you drop your cell phone, it could fix itself and last much longer.”

Read more

If you drop your phone and the screen shatters, you usually have two options: get it repaired or replace the phone entirely.

Chemists at the University of California, Riverside, have invented what could become a third option: a phone screen material that can heal itself.

The researchers conducted several tests on the material, including its ability to repair itself from cuts and scratches.

Read more

Could artificial intelligence make devices easier to use? According to Samsung, it sure can, and that’s what it the company out to prove with its Bixby AI service.

Bixby is being loaded on the Galaxy S8 and S8+ smartphones, which were announced on Tuesday. Bixby is an agent that can help the smartphones talk, recommend, and remind, said Mok Oh, vice president of service strategy at Samsung.

The AI service is being positioned as a more intuitive way to use and interact with smartphones. For example, Bixby can help smartphones execute tasks with a voice command. It also brings cool features like image recognition and language translation on board the S8 smartphones.

Read more

Back in August 2014, researchers at Michigan State University created a fully transparent solar concentrator, which could turn any window or sheet of glass (like your smartphone’s screen) into a photovoltaic solar cell. Unlike other “transparent” solar cells that we’ve reported on in the past, this one really is transparent, as you can see in the photos throughout this story. According to Richard Lunt, who led the research at the time, the team was confident the transparent solar panels can be efficiently deployed in a wide range of settings, from “tall buildings with lots of windows or any kind of mobile device that demands high aesthetic quality like a phone or e-reader.”

Now Ubiquitous Energy, an MIT startup we first reported on in 2013, is getting closer to bringing its transparent solar panels to market. Lunt cofounded the company and remains assistant professor of chemical engineering and materials science at Michigan State University. Essentially, what they’re doing is instead of shrinking the components, they’re changing the way the cell absorbs light. The cell selectively harvests the part of the solar spectrum we can’t see with our eye, while letting regular visible light pass through.

Scientifically, a transparent solar panel is something of an oxymoron. Solar cells, specifically the photovoltaic kind, make energy by absorbing photons (sunlight) and converting them into electrons (electricity). If a material is transparent, however, by definition it means that all of the light passes through the medium to strike the back of your eye. This is why previous transparent solar cells have actually only been partially transparent — and, to add insult to injury, they usually they cast a colorful shadow too.

Read more

A future bar fad?


Science has pulled through with the goods once again. Nope, no word yet on an unlimited clean energy source or a phone battery that lasts more than a day. But hold tight, they have created an indoor cloud that produces raindrops of real tequila.

The tequila cloud is part of an installation at Urban Spree art gallery in Berlin, created by the ad agency LAPIZ on behalf of the Mexico Tourism Board. The idea is that the weather sucks in Germany during March, so why not head over to Mexico for a holiday? Sounds good to us.

It works by using specialized humidifiers to vibrate tequila at an ultrasonic frequency that turns it into a thick visible fog. The mist is then able to condense into water and fall as rain drops. They even let guests drink the tequila rain for free.

Read more