Toggle light / dark theme

Hmmmm.


ATTENTION owners of truly massive, human-built tunnels and subterranean complexes: The US military’s secretive research agency urgently needs your underground lair for some undisclosed experiments.

DARPA tweeted on Wednesday that within the next 48 hours it must find a “human-made underground environment spanning several city blocks with complex layout & multiple stories, including atriums, tunnels & stairwells. Spaces that are currently closed off from pedestrians or can be temporarily used for testing are of interest.”

I’m imagining something along the lines of the underground world used by the tethered in the movie Us, though it also sounds like abandoned underground malls, bunkers, cities, and as-to-yet undiscovered sites of lost civilizations may qualify, so long as the space is found by 5 PM Friday (Eastern Time; the government’s hours are very rigid.)

Editor’s note: This article is part of a supporting engagement with the Electromagnetic Defense Task Force’s efforts in order to inform readers on the vulnerabilities within the electromagnetic spectrum. For the printer friendly version click here.

Abstract

In spring 2019, a group of nearly 200 military, government, academic, and private industry experts in various areas of electromagnetic defense gathered for the second Electromagnetic Defense Task Force (EDTF) summit. During this time a full analytical and technical review was initiated on the recently released report titled “High-Altitude Electromagnetic Pulse and the Bulk Power System: Potential Impacts and Mitigation Strategies” authored by the Electric Power Research Institute (EPRI). This essay outlines the strengths and weaknesses of the report and aims to generate further discussion among industry, policy makers, military, and academia to ensure the nation is adequately prepared for any potential electromagnetic event.

A new high definition radar system that could change the nature of warfare has been demonstrated for the first time. The result, quantum radar, is a high definition detection system that provides a much more detailed image of targets while itself remaining difficult to detect. Quantum radars could provide users with enough detail to identify aircraft, missiles, and other aerial targets by specific model.

According to the MIT Technology Review, researchers at Austria’s Institute of Science and Technology used entangled microwaves to create the world’s first quantum radar system.

With a flourish of a silk curtain at the Farnborough Air Show on July 16, British defense secretary Gavin Williamson unveiled a full-scale model of the Tempest, the UK’s concept for a domestically built twin-engine stealth fighter to enter service in the 2030s. The Tempest will supposedly boast a laundry list of sixth-generation technologies such as being optionally-manned, mounting hypersonic or directed energy weapons, and capability to deploy and control drone swarms. However, it may also represent a Brexit-era gambit to revive defense cooperation with Germany and France.

London has seeded “Team Tempest” with £2 billion ($2.6 billion) for initial development through 2020. Major defense contractor BAE System is leading development with the Royal Air Force, with Rolls Royce contributing engines, European firm MBDA integrating weapons, and Italian company Leonardo developing sensors and avionics.

Design will supposedly be finalized in the early 2020s, with a flyable prototype planned in 2025 and production aircraft entering service in 2035, gradually replacing the RAF’s fourth-generation Typhoon fighters and complementing F-35 stealth jets. This seventeen-year development cycle is considered ambitious for something as complicated and expensive as a stealth fighter.

https://youtube.com/watch?v=A7QXerW77I4

A polymer that self-destructs? While once a fictional idea, new polymers now exist that are rugged enough to ferry packages or sensors into hostile territory and vaporize immediately upon a military mission’s completion. The material has been made into a rigid-winged glider and a nylon-like parachute fabric for airborne delivery across distances of a hundred miles or more. It could also be used someday in building materials or environmental sensors.

The researchers will present their results today at the American Chemical Society (ACS) Fall 2019 National Meeting & Exposition.

“This is not the kind of thing that slowly degrades over a year, like the that consumers might be familiar with,” says Paul Kohl, Ph.D., whose team developed the material. “This polymer disappears in an instant when you push a button to trigger an internal mechanism or the sun hits it.” The disappearing polymers were developed for the Department of Defense, which is interested in deploying electronic sensors and delivery vehicles that leave no trace of their existence after use, thus avoiding discovery and alleviating the need for device recovery.

SAN ANTONIO — April 8, 2019 — A team of Southwest Research Institute and General Electric (GE) engineers have designed, built and tested the highest temperature supercritical carbon dioxide (sCO2) turbine in the world. The turbine was developed with $6.8 million of funding from the U.S. Department of Energy (DOE) Solar Energy Technologies Office (SETO), in addition to $3 million from commercial partners GE Research, Thar Energy, Electric Power Research Institute, Aramco Services Company and Navy Nuclear Laboratory. Additionally, the DOE’s Advanced Research Projects Agency — Energy (ARPA-E) Full-Spectrum Optimized Conversion and Utilization of Sunlight (FOCUS) program provided financial support and extended the test program to validate advanced thermal seals.


Copyright © 2019 by the American Association for the Advancement of Science (AAAS)

fusionsunLast year, Pentagon mad science arm DARPA was working on one of its wildest projects yet: a microchip-sized nuclear reactor. The program is now officially done, the agency says. But these sorts of far-out projects have a habit of being reemerging under new managers and new names.

The project, known as the “Chip-Scale High Energy Atomic Beams” program, is an effort aimed at working on the core technologies behind a tiny particle accelerator, capable of firing subatomic particles at incredible speeds. It’s part of a larger DARPA plan to reduce all sorts of devices to microchip-scale – including cryogenic coolers, video cameras and multi-purpose sensors. All of the projects are ambitious (this is DARPA, after all). But this had to be the most ambitious of the lot. Here’s how DARPA’s plans for fiscal year 2009 described it:

You’ve read your last complimentary article this month. To read the full article, SUBSCRIBE NOW. If you’re already a subscriber, please sign in and and verify your subscription.

The U.S. Defense Advanced Research Projects Agency (DARPA) kicked off the Subterranean Challenge in December 2017, with the goal of equipping future warfighters and first responders with tools to rapidly map, navigate, and search hazardous underground environments. The final winner of the four-event competition won’t be selected until 2021, but Team Explorer from Carnegie Mellon University and Oregon State University managed to best rivals for the initial prize.

On four occasions during the eight-day Tunnel Circuit event, which concluded today, each team deployed multiple robots into National Institute for Occupational Safety and Health research mines in South Park Township, Pennsylvania, tasked with autonomously navigating mud and water and communicating with each other and a base station for an hour at a time as they searched for objects. Team Explorer’s roughly 30 university faculty, students, and staff members leveraged two ground robots and two drones to find 25 artifacts in its two best runs (14 more than any other team), managing to identify and locate a backpack within 20 centimeters of its actual position.

“Mobility was a big advantage for us,” said team co-leader Sebastian Scherer, associate research professor in Carnegie Mellon’s Robotics Institute, in a statement. “The testing [prior to the event, at Tour-Ed Mine in Tarentum, Pennsylvania] was brutal at the end, but it paid off in the end. We were prepared for this … We had big wheels and lots of power, and autonomy that just wouldn’t quit.”

Is a privately-owned startup based out of New Mexico, USA. Their team leans on expertise gained at NASA, the US Department of Energy, Sandia and Los Alamos National Labs, and the US Air Force. Planetoid Mines’ primary focus is developing the core components that enable asteroid mining. Many of their instruments and tools will be compatible with mining applications on the lunar surface and on Earth.

A lot of activity has been brewing with regards to new space exploration initiatives. Launch costs are plummeting due to market competition and the development of reusable rockets. Additionally, there has been a measurable uptick in growth and investment in commercial space ventures. Every major national space agency has ambitions for operations in lunar orbit and on the lunar surface within the next 5 to 20 years.

Washington (AFP) — Amazon, Microsoft and Intel are among leading tech companies putting the world at risk through killer robot development, according to a report that surveyed major players from the sector about their stance on lethal autonomous weapons.

Dutch NGO Pax ranked 50 companies by three criteria: whether they were developing technology that could be relevant to deadly AI, whether they were working on related military projects, and if they had committed to abstaining from contributing in the future.

“Why are companies like Microsoft and Amazon not denying that they’re currently developing these highly controversial weapons, which could decide to kill people without direct human involvement?” said Frank Slijper, lead author of the report published this week.