Toggle light / dark theme

Researchers said this building material has structural load-bearing function, is capable of self-healing and is more environmentally friendly than concrete – which is the second most-consumed material on Earth after water.

The team from the University of Colorado Boulder believe their work paves the way for future building structures that could “heal their own cracks, suck up dangerous toxins from the air or even glow on command”.

Wil Srubar, who heads the Living Materials Laboratory at the University of Colorado Boulder and is one of the study authors, said: “We already use biological materials in our buildings, like wood, but those materials are no longer alive.

Scientists working at Idaho National Laboratory (INL) have announced the approval of a new high-temperature metal after 12 years and a $15 million Department of Energy investment. Alloy 617, a “combination of nickel, chromium, cobalt and molybdenum,” is tolerant and strong at temperatures of more than 1,700 degrees Fahrenheit. The scientists say this means it could be used in existing high temperature nuclear facilities as well as cutting-edge applications like molten salt reactors.

For any new nuclear plant material, making the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code is like qualifying for the Olympics. Alloy 617 is the first new material to get into “The Code” in 30 years.

Question: When you’ve designed the world’s most efficient metamaterial, one that could change the way cars, planes and even space exploration vehicles are built, is mostly air yet reaches the theoretical bounds for stiffness and strength and can equally resist forces coming from any direction, what do you do next?

Answer: You break it.

At least, that’s what a team of material scientists including Jonathan Berger of UC Santa Barbara and Jens Bauer of UC Irvine did. Their goal? To learn what boundaries could be pushed with a novel metamaterial called plate-nanolattice. The research findings are published in a paper in the journal Nature Communications (“Plate-nanolattices at the theoretical limit of stiffness and strength”).

Depending on who you ask and where you are, wearing a mask can be an important part of the strategy to stop the spread of SARS-CoV-2.

With the CDC recommending surgical and N95 masks should be kept for medical personnel on the front line, if you do want or need a mask, you should be purchasing or making a cloth one.

But when looking at cloth masks, which materials work best for keeping your germs in and other people’s germs out?

Former Senate Majority Leader Harry Reid (D-Nev.) praised Monday’s release of the videos, but said more action is needed.

“I’m glad the Pentagon is finally releasing this footage, but it only scratches the surface of research and materials available,” he tweeted. “The U.S. needs to take a serious, scientific look at this and any potential national security implications. The American people deserve to be informed.”


The Pentagon on Monday officially released three videos of “unidentified” flying objects that have been previously leaked to the public.

The Department of Defense authorized the release of the three unclassified videos, including one recorded in November 2004 and two others captured in January 2015. The videos had been distributed in 2007 and 2017, the department noted in a statement.

Officials decided the official release of the videos would not reveal any “sensitive capabilities or systems” and would not impact investigations of unidentified flying objects.

By more accurately printing complex geometric patterns, this new 3D printing method makes construction projects more efficient with less waste and faster time to market.


A new 3D printing method could revolutionize the way additive manufacturing is used to print materials on construction sites.

When black holes swallow down massive amounts of matter from the space around them, they’re not exactly subtle about it. They belch out tremendous flares of X-rays, generated by the material heating to intense temperatures as it’s sucked towards the black hole, so bright we can detect them from Earth.

This is normal black hole behaviour. What isn’t normal is for those X-ray flares to spew forth with clockwork regularity, a puzzling behaviour reported last year from a supermassive black hole at the centre of a galaxy 250 million light-years away. Every nine hours, boom — X-ray flare.

After careful study, astronomer Andrew King of the University of Leicester in the UK believes he has identified the cause — a dead star that’s endured its brush with a black hole, trapped on a nine-hour, elliptical orbit around it. Every close pass, or periastron, the black hole slurps up more of the star’s material.

Researchers at Bilkent University in Turkey have recently created a small quadruped robot called SQuad, which is made of soft structural materials. This unique robot, presented in a paper published in IEEE Robotics and Automation Letters, is more flexible than existing miniature robots and is thus better at climbing or circumventing obstacles in its surroundings.

“We have been working on for almost a decade now,” Onur Ozcan, one of the researchers who carried out the study, told TechXplore. “Even though miniature robots have many advantages, such as being cheap, as they require fewer materials, and the ability to access confined spaces, one of their major drawbacks is their lack of locomotion capabilities, especially on uneven terrain.”

Tiny robots tend to get stuck easily while moving in the surrounding environment, as their height does not allow them to climb or avoid obstacles. Ozcan and his colleagues tried to overcome this limitation by implementing a principle known as ‘body compliance.”

Rochester Institute of Technology scientists have developed the first three-dimensional mass estimate to show where microplastic pollution is collecting in Lake Erie. The study examines nine different types of polymers that are believed to account for 75 percent of the world’s plastic waste.

Plastic behaves differently in lakes than in oceans; previous studies on both have indicated the levels of pollution found on the surface are lower than expected based on how much is entering the water. While massive floating “islands” of accumulated have been found in oceans, previous studies have indicated the levels of plastic pollution found on the surface of Lake Erie are lower than expected based on how much is entering the water.

The new RIT estimate for the 3D mass—381 metric tons—is more than 50 times greater than the previous estimates at the surface. The study also generated the first estimate of how much plastic is deposited on the bottom of the . It accounts for the unique properties of different types of plastics and shows that the three polymers with the lowest density—polyethylene, polypropylene and expanded polystyrene—accumulate on the surface of the lake while the other six polymers were concentrated in the sediment.