Toggle light / dark theme

It’s almost the weekend and what better way to celebrate than a nice long interview with one of the Heroes of aging research? Today we bring you a mega-interview with Dr. Aubrey de Grey.


Today we have an interview with Dr. Aubrey de Grey from the SENS Research Foundation. This interview conducted by Yuri Deigin was originally published in Russian language and he has kindly translated it into English so our audience can enjoy it too.

Yuri: Aubrey, thank you very much for agreeing to this interview. Why don’t we dive right in? I am sure everybody asks you this: how and when did you become interested in aging, and when did you decide to make it your life’s mission to defeat it?

Aubrey de Grey: I became interested in aging and decided to work on it in my late 20s, so, in the early 1990s. The reason I became interested was because that was when I discovered that other biologists were almost all not interested in it. They did not think that aging was a particularly important or interesting question. I had always assumed, throughout my whole life, that aging was obviously the world’s most important problem. I thought that people who understood biology would be working on it really hard. Then, I discovered that wasn’t true and that hardly any biologists were working on it. The ones that were weren’t doing it very well, not very productively as far as I could see. I thought I’d better have a go myself, so I switched fields from my previous research area, which was artificial intelligence.

Read more

A new way of administering drugs for wet age-related macular degeneration might be close.


Two studies by researchers at the University of Birmingham have shown that delivering drugs against the wet form of age-related macular degeneration (AMD) in the form of eyedrops might soon be possible in humans [1, 2].

What is age-related macular degeneration?

AMD is a pathology of the retina, which is a light-sensitive tissue located in the back of the eye and is similar to the film in a non-digital camera. Two-dimensional images are created on the retina and are subsequently transferred to the brain in the form of electrical neural impulses. Near the center of the retina is the macula, an oval-shaped region responsible for central, high-resolution, color vision. In AMD, the macula is damaged, impairing or preventing this kind of vision. AMD is progressive, but it cannot lead to total blindness, as it doesn’t affect peripheral vision. It comes in two forms, wet and dry, with the latter being overwhelmingly more common and, unfortunately, presently incurable. As the name suggests, the highest risk factor for AMD is age; the disease is usually observed only in patients over 50.

Read more

A new study shows that mice reprogram their gut tissues to repair injury rolling them from an aged state back to a more fetal-like one.


Getting old is one thing; getting old in a healthy way is another. Many elderly people suffer from all kinds of diseases and disorders, ranging from cardiovascular problems and diabetes to Alzheimer’s and Parkinson’s disease. Wouldn’t it be nice if we could keep the body young as we grow older to prevent disease associated with old age? For instance, would it be possible to slow down or reverse the aging processes in the cells of our body?

This question has gained a lot of interest from scientists, and their research has led to the discovery of the important role that the shortening of telomeres, the protective caps on our DNA, plays in aging. While this has been described in recent posts on the LEAF blog, I would like to address another mechanism that has seen an interesting leap forward, more or less by accident: rejuvenation of tissue.

Rejuvenation is a term that has recently been used in the context of senolytics. These are newly discovered compounds that decrease the number of senescent cells in the body. For the purpose of this article, I define rejuvenation as the resetting of a genetic program within a cell or tissue, from adult back to fetal. Typically, cells develop from stem cells, which are cells that can differentiate into many different cell types. During cell differentiation, certain genetic programs in the stem cell are turned off, while others are turned on to make the formation of a specific cell type possible. During rejuvenation, this process is reversed: differentiated cells are reset to an embryonic state.

Read more

Aging may seem like the most natural—and inevitable—thing in life. Yet according to a new study in Nature Medicine, rejuvenating an aging body may be as easy as kitchen renovations. Simply swap drill and hammer for a cocktail of two drugs already on the market; rather than pulling out decrepit cabinets, kill off aged “zombie” cells.

These so-called senescent cells are a curious oddity: they’re frail, beat-up, and unable to perform their usual roles. Yet they simply refuse to die. What’s more, zombie cells actively leak inflammatory chemicals into their surroundings, damaging nearby tissue and—in a sense—“spreading” the negative effects of aging.

Yet because they’re extremely rare, amounting to only eight percent of the body’s cells at most, scientists have long wondered just how much they contribute to the aging process.

Read more

It was a major feature for the #transhumanism and life extension movements, seen by likely millions of people because it was translated into various languages via international syndication. Story by Richard Godwin. https://www.thetimes.co.uk/article/zoltan-istvan-the-poster-boy-for-immortality-lrbx66lqn

Read more

Aging may be regulated by a discrete set of intracellular proteins including the mechanistic target of rapamycin (mTOR) kinase. mTOR functions within two multiprotein complexes called TORC1 and TORC2. Inhibition of TORC1 has extended life span in every species studied to date and ameliorated multiple aging-related pathologies including declining immune function. Mannick et al. now show that low-dose TORC1 inhibitor therapy in elderly humans decreased the incidence of all infections, improved influenza vaccination responses, and up-regulated antiviral immunity. Thus, targeting the TORC1 pathway that regulates aging may have clinical benefits for elderly humans including improvement in immune function and decreased infection rates.

Inhibition of the mechanistic target of rapamycin (mTOR) protein kinase extends life span and ameliorates aging-related pathologies including declining immune function in model organisms. The objective of this phase 2a randomized, placebo-controlled clinical trial was to determine whether low-dose mTOR inhibitor therapy enhanced immune function and decreased infection rates in 264 elderly subjects given the study drugs for 6 weeks. A low-dose combination of a catalytic (BEZ235) plus an allosteric (RAD001) mTOR inhibitor that selectively inhibits target of rapamycin complex 1 (TORC1) downstream of mTOR was safe and was associated with a significant (P = 0.001) decrease in the rate of infections reported by elderly subjects for a year after study drug initiation. In addition, we observed an up-regulation of antiviral gene expression and an improvement in the response to influenza vaccination in this treatment group.

Read more

In a study on murine mtDNA, scientists reversed skin wrinkles and hair loss.


In what appears to be a world first, scientists at the University of Alabama at Birmingham have reversed two of the most common visual signs of aging—skin wrinkles and hair loss—in mice by turning off a gene responsible for mitochondrial dysfunction [1].

Study abstract

Read more

Australian researchers have made a discovery about telomeres that may have implications for aging, heart disease, cancer, and other age-related diseases.

So, what are telomeres?

Each of the chromosomes that store our genetic information has a telomere at each end. This protective cap consists of a specific DNA sequence that is repeated thousands of times and has two purposes: firstly, it protects the coding regions of the chromosomes and prevents them from being damaged, and secondly, it acts as a clock that controls the number of replications a cell can undergo; this is thought to act as a quality control system to ensure that aged and potentially damaged cells do not remain in circulation.

Read more