Toggle light / dark theme

Swedish and Chinese scientists have developed organic solar cells optimised to convert ambient indoor light to electricity. The power they produce is low, but is probably enough to feed the millions of products that the internet of things will bring online.

As the internet of things expands, it is expected that we will need to have millions of products online, both in public spaces and in homes. Many of these will be the multitude of sensors to detect and measure moisture, particle concentrations, temperature and other parameters. For this reason, the demand for small and cheap sources of renewable energy is increasing rapidly, in order to reduce the need for frequent and expensive battery replacements.

This is where organic solar cells come in. Not only are they flexible, cheap to manufacture and suitable for manufacture as large surfaces in a printing press, they have one further advantage: the light-absorbing layer consists of a mixture of donor and acceptor materials, which gives considerable flexibility in tuning the solar cells such that they are optimised for different spectra – for light of different wavelengths.

The Nobel Prize for physics was announced on October 8 where Mayor jointly shared half of the prize with Didier Quelzo while the other half was awarded to James Peebles. Both Mayor and Didier jointly discovered a planet outside our solar system, an exoplanet, orbiting a solar-type star.

Linksys, a division within Belkin International and Foxconn Interconnect Technology, has announced that it is offering a new motion detection service with its mesh Wi-Fi routers. As part of its announcement, the company said that the service will be subscription-based and will only be available (for now) with its Linksys Velop Tri-Band AC2200 routers. The new service is called Linksys Aware.

Mesh routers are designed to be placed in multiple locations in a home or business to ensure that there are no dead spots. Since the signals create a signal mesh, software in the routers detect how the signals are bounced around, creating imprints of individual rooms and what the signals look like. If signals are interrupted, it means that something is physically blocking them, such as a person. If such a blockage is detected, the routers can send a message to an app, also created by Linksys, alerting homeowners to a possible intruder.

Users who want the new service need only install the software on their current routers, along with the app—and then sign up to pay either $2.99 each month or $24.99 for a full year. The company is also offering a 90-day free trial of the service.

If the race for powerful A.I. is indeed a race among civilizations for control of the future, the United States and European nations should be spending at least 50 times the amount they do on public funding of basic A.I. research. Their model should be the research that led to the internet, funded by the Advanced Research Projects Agency, created by the Eisenhower administration and arguably the most successful publicly funded science project in American history.


We need to stop pretending that Silicon Valley can compete with China on its own.

Researchers led by Delft University of Technology personnel have made two steps in the conversion of quantum states between signals in the microwave and optical domains. This is of great interest for connecting future superconducting quantum computers into a global quantum network. This week they report on their findings in Nature Physics and in Physical Review Letters.

Conversion between signals in the microwave and optical domains is of great interest, particularly for connecting future superconducting quantum computers into a global quantum network. Many leading efforts in quantum technologies, including superconducting qubits and quantum dots, share quantum information through photons in the microwave regime. While this allows for an impressive degree of quantum control, it also limits the distance the information can realistically travel before being lost to a mere few centimeters.

At the same time, the field of optical quantum communication has already seen demonstrations over distance scales capable of providing real-world applications. By transmitting information in the optical telecom band, fiber-based quantum networks over tens or even hundreds of kilometers can be envisaged. “In order to connect several quantum computing nodes over large distances into a quantum internet, it is therefore vital to be able to convert quantum information from the microwave to the optical domain, and back,” says Prof. Simon Groeblacher of Delft University of Technology. “This will not only be extremely interesting for quantum applications, but also for highly efficient, low-noise conversion between classical optical and .”

In the past, a trip to the circus was nothing without seeing some exotic animals doing impressive tricks. But as we become more aware of human impact on the world, and more inclined to be careful about how we interact with other species on earth, the simple pleasure no longer seems so pure. In fact, using other animals for our enjoyment seems deeply unethical, and, for many, precludes any circus-related enjoyment.

But one innovative circus has come up with a solution to this problem. Wanting to enchant visitors with traditional shows of the past without having to make shady ethical calls, they’ve gone for a different approach. Instead of performing these tricks with living beings, they’ve used technical advancements to achieve beautiful effects — and the internet is loving it.

Researchers in the lab of UC Santa Barbara professor Yasamin Mostofi have enabled, for the first time, determining whether the person behind a wall is the same individual who appears in given video footage, using only a pair of WiFi transceivers outside.

This novel video-WiFi cross-modal gait-based person identification system, which they refer to as XModal-ID (pronounced Cross-Modal-ID), could have a variety of applications, from surveillance and security to smart homes. For instance, consider a scenario in which law enforcement has a of a robbery. They suspect that the robber is hiding inside a house. Can a pair of WiFi transceivers outside the house determine if the person inside the house is the same as the one in the robbery video? Questions such as this have motivated this new technology.

“Our proposed approach makes it possible to determine if the person behind the wall is the same as the one in video footage, using only a pair of off-the-shelf WiFi transceivers outside,” said Mostofi. “This approach utilizes only received power measurements of a WiFi link. It does not need any prior WiFi or video training data of the person to be identified. It also does not need any knowledge of the operation area.”