Toggle light / dark theme

Again; many problems with AI & IoT all ties back to the infrastructure of things. Focus on fast tracking QC and an interim solution (pre-QC) such as a mix of Nvidia’s GPU, blockchain for financial transactions, etc. to improve the infrastructure and Net then investors will begin to pay more attention to AI, etc.


After more than 60 years since its conceptual inception — and after too many hype-generating moments — AI is yet again making its presence felt in mainstream media.

Following a recent WEF report, many perceive AI as a threat to our jobs, while others even go so far to assert that it poses a real threat to humanity itself.

What is clear for the time being is that there are many questions that still remain unanswered: Can we actually create conscious machines that have the ability to think and feel? What we do we mean by the word conscious in the first place? What is the accurate definition of intelligence? And what are the implications of combining the Internet of Things (IoT) with intelligence?

Read more

Knowing a cyberattack’s going to occur before it actually happens is very useful—but it’s tricky to achieve in practice. Now MIT’s built an artificial intelligence system that can predict attacks 85 percent of the time.

Cyberattack spotters work in two main ways. Some are AI that simply looks out for anomalies in internet traffic. They work, but often throw up false positives—warnings about a threat when actually nothing’s wrong. Other software systems are built on rules developed by humans, but it’s hard to create systems like that which catches every attack.

Instead, researchers from MIT’s Computer Science and Artificial Intelligence Lab built a new AI—creatively named AI2—that combines the two approaches.

Read more

All true and good points. Until the under pinning technology and net infrastructures are update; all things connected will mean all things hackable.


Medical devices like pacemakers and insulin pumps will save many lives, but they also represent an opportunity to computer hackers who would use the Internet to cause havoc. Former futurist-in-residence at the FBI, Marc Goodman says it is easy to take for granted how connected we’ve already become to the Internet. Most American adults keep their phones within arm’s reach all day, and keep their devices on their nightstand while they sleep — and forget about actually remembering people’s phone numbers. That is a job we have outsourced to machines.

In this sense, says Goodman, we are already cyborgs. But digital devices connected to the Internet will continue to move inside our bodies, just as pacemakers and insulin pumps have. In his interview, Goodman discusses cases of computer hackers taking advantage of these devices’ connectivity to show how vulnerable we could soon become to their potentially destructive wishes. In one case, a hacker demonstrated he could release several weeks of insulin into a diabetic’s body, certain to cause a diabetic coma and death. In another, hackers induced epileptic seizures by hacking the Epilepsy Foundation’s webpage.

At bottom is the Internet of Things, a increasingly connected web of devices that will make our lives simpler and more efficient, but this network will also make us vulnerable in ways that are difficult to detect, let alone prevent. Goodman’s message is not that we need to constantly fear a new world of better health and convenience, but that we need to be aware of technology’s pitfalls in life.

Read more

Re-inventing the integrated circuit.


Since the advent of the integrated circuit in 1958, the same year the Advanced Research Projects Agency was established, engineers have been jamming ever more microelectronic integration into ever less chip real estate. Now it has become routine to pack billions of transistors onto chips the size of fingernails.

DARPA (the D for Defense was first added in 1972) has played key roles in this ongoing miracle of miniaturization, giving rise to new and sometimes revolutionary military and civilian capabilities in domains as diverse as communication, intelligence gathering, and optical information processing. ‎Now a DARPA-funded team has drastically miniaturized highly specialized electronic components called circulators and for the first time integrated them into standard silicon-based circuitry. The feat could lead to a doubling of radiofrequency (RF) capacity for wireless communications—meaning even faster web-searching and downloads, for example—as well as the development of smaller, less expensive and more readily upgraded antenna arrays for radar, signals intelligence, and other applications.

The work, funded under DARPA’s Arrays at Commercial Timescales (ACT) program, was led by Columbia University electrical engineers Harish Krishnaswamy and Negar Reiskarimian and described in the April 15, 2016 issue of the journal Nature Communications.

Read more

I am still not convinced that everyone fully understands how bot technology is about to change IoT and its impact to online business industry. Let me share a few ideas: Financial Auditing and accounting. Bots will be able to do a more thorough job in managing, tracking, reporting financials that many finance back office controls can be performed by bots and requiring a sign off by CFO/ Lead Controller. And, Accounting & Audit firms can easily leverage the technology to perform audits on companies remotely without having to send teams of auditors to a client’s site.

Here’s another one; I decide to set up a few 3D printers to make some unique seals for aircraft manufactures for their jets/ planes; and I need a call center plus online sales teams taking and processing orders. With bot technology my whole operation is automated and no need for sales people, call center folks, or operators. All I need is myself and couple of techies to manage the bot operations; and more profit for me and my team.

However, we still have to keep a tight oversight on hacking which is still a risk; however, we should see more micro-size companies spin up as a result of online bots and 3D printers in our immediate future.


Don’t even TRY to get Intersect Bot to talk about Trump or the Holocaust.

Read more

Microscopic spaceships powered by Earth-based lasers are being developed to hunt for extra-terrestrial life in Alpha Centauri, the closest star system to ours.

The £70m Breakthrough Starshot concept involves creating a tiny robotic spacecraft, no larger than a mobile phone chip, which would carry cameras, thrusters, a power supply and navigation and communication equipment.

Physicist Stephen Hawking, Facebook founder Mark Zuckerberg and Russian internet billionaire Yuri Milner have all joined the project’s board giving it major backing.

Read more

“This technology could revolutionize the field of telecommunications,” says Krishnaswamy, director of the Columbia High-Speed and Mm-wave IC (CoSMIC) Lab. “Our circulator is the first to be put on a silicon chip, and we get literally orders of magnitude better performance than prior work. Full-duplex communications, where the transmitter and the receiver operate at the same time and at the same frequency, has become a critical research area and now we’ve shown that WiFi capacity can be doubled on a nanoscale silicon chip with a single antenna. This has enormous implications for devices like smartphones and tablets.”

Krishnaswamy’s group has been working on silicon radio chips for full duplex communications for several years and became particularly interested in the role of the circulator, a component that enables full-duplex communications where the transmitter and the receiver share the same antenna. In order to do this, the circulator has to “break” Lorentz Reciprocity, a fundamental physical characteristic of most electronic structures that requires electromagnetic waves travel in the same manner in forward and reverse directions.

“Reciprocal circuits and systems are quite restrictive because you can’t control the signal freely,” says PhD student Negar Reiskarimian, who developed the circulator and is lead author of the Nature Communications paper. “We wanted to create a simple and efficient way, using conventional materials, to break Lorentz Reciprocity and build a low-cost nanoscale circulator that would fit on a chip. This could open up the door to all kinds of exciting new applications.”

Read more

A microchip that filters out unwanted radiation with the help of graphene has been developed by scientists from the EPFL and tested by researchers of the University of Geneva (UNIGE). The invention could be used in future devices to transmit wireless data ten times faster.

EPFL and UNIGE scientists have developed a using graphene that could help wireless telecommunications share data at a rate that is ten times faster than currently possible. The results are published today in Nature Communications.

“Our graphene based microchip is an essential building block for faster wireless telecommunications in frequency bands that current mobile devices cannot access,” says EPFL scientist Michele Tamagnone.

Read more

Creative approach and I like it. I advise IT leaders, developers, architects, etc. to start learning as much as they can about Quantum Technology because technology in the next 6 to 7 years will begin the accelerated adoption of this technology and at that point it will be too late for folks in tech to catch up. Now is the time to learn and keep track of the progression of this technology as well as understand where and how this technology can be leveraged earlier in various areas of the infrastructure, devices, and even in industry.


Researchers gave internet users games that simulate quantum physics experiments, and internet users gave the researchers more elegant solutions.

Read more