Three men with severe spinal cord injuries have walked for the first time in years after receiving targeted electrical stimulation of the spinal cord.
Breakthrough: Spinal cord injuries can severely reduce a person’s range of motion or lead to complete leg paralysis. In two new papers published in Natureand Nature Neuroscience, researchers describe implanting electrical stimulators into the damaged spinal cords of three men who all had partial or complete lower-leg paralysis. The stimulators then delivered targeted electric pulses in time with the patients’ walking gait.
The patients wore a series of sensors on their legs and feet that wirelessly communicated to the stimulators as they began to walk. Within a week, the men were able to leave the treadmill and walk on the ground with continued electrical stimulation. After a few months, they regained the ability to walk without any electrical stimulation at all.
For nearly 200 years, Katsushika Hokusai’s iconic woodblock print The Great Wave off Kanagawa has inspired wonder partly because the event it depicts, a towering freak wave, has defied scientific explanation.
Now, a team at Oxford and Edinburgh universities claim to have laid the mystery to rest by successfully creating one for themselves — and it looks remarkably similar.
The achievement is being hailed as a significant breakthrough because, so far, meteorologists and sailors have had no means of predicting the likelihood of violent waves that are unexpectedly large compared to their surroundings.
An international research team led by the University of Liverpool and McMaster University has made a significant breakthrough in the search for new states of matter.
Research in immunotherapy identifies mechanism that helps fight lung cancer and melanoma.
In a breakthrough discovery, scientists from Harvard Medical School along with a team at Bar-Ilan University have uncovered a mechanism in which the immune system is capable of attacking cancer cells. This contributes greatly to research in immunotherapy, particularly in fighting lung cancer and melanoma (skin cancer). The research team was composed of Prof. Nick Hainin of Harvard Medical School and Prof. Erez Levanon of the Mina and Everard Goodman Faculty of Life Sciences at Bar-Ilan University, along with doctoral student, Ilana Buchumansky and many others.
The study was published two weeks ago in the journal Nature, detailing how scientists have uncovered a mechanism that assists the cell by leaving markers on human virus-like genes thereby preventing them from being recognized as viruses. When this channel is inhibited, the immune system can be utilized to destroy cancerous cells, particularly in the cases of lung cancer and melanoma. The immune system reacts when this path is blocked or shut off, and allows the body to destroy cancer cells at a more effective rate.
CERN has revealed plans for a gigantic successor of the giant atom smasher LHC, the biggest machine ever built. Particle physicists will never stop to ask for ever larger big bang machines. But where are the limits for the ordinary society concerning costs and existential risks?
CERN boffins are already conducting a mega experiment at the LHC, a 27km circular particle collider, at the cost of several billion Euros to study conditions of matter as it existed fractions of a second after the big bang and to find the smallest particle possible – but the question is how could they ever know? Now, they pretend to be a little bit upset because they could not find any particles beyond the standard model, which means something they would not expect. To achieve that, particle physicists would like to build an even larger “Future Circular Collider” (FCC) near Geneva, where CERN enjoys extraterritorial status, with a ring of 100km – for about 24 billion Euros.
Experts point out that this research could be as limitless as the universe itself. The UK’s former Chief Scientific Advisor, Prof Sir David King told BBC: “We have to draw a line somewhere otherwise we end up with a collider that is so large that it goes around the equator. And if it doesn’t end there perhaps there will be a request for one that goes to the Moon and back.”
“There is always going to be more deep physics to be conducted with larger and larger colliders. My question is to what extent will the knowledge that we already have be extended to benefit humanity?”
There have been broad discussions about whether high energy nuclear experiments could pose an existential risk sooner or later, for example by producing micro black holes (mBH) or strange matter (strangelets) that could convert ordinary matter into strange matter and that eventually could start an infinite chain reaction from the moment it was stable – theoretically at a mass of around 1000 protons.
CERN has argued that micro black holes eventually could be produced, but they would not be stable and evaporate immediately due to „Hawking radiation“, a theoretical process that has never been observed.
Furthermore, CERN argues that similar high energy particle collisions occur naturally in the universe and in the Earth’s atmosphere, so they could not be dangerous. However, such natural high energy collisions are seldom and they have only been measured rather indirectly. Basically, nature does not set up LHC experiments: For example, the density of such artificial particle collisions never occurs in Earth’s atmosphere. Even if the cosmic ray argument was legitimate: CERN produces as many high energy collisions in an artificial narrow space as occur naturally in more than hundred thousand years in the atmosphere. Physicists look quite puzzled when they recalculate it.
Others argue that a particle collider ring would have to be bigger than the Earth to be dangerous.
Since these discussions can become very sophisticated, there is also a more general approach (see video): According to present research, there are around 10 billion Earth-like planets alone in our galaxy, the Milky Way. Intelligent life might send radio waves, because they are extremely long lasting, though we have not received any (“Fermi paradox”). Theory postulates that there could be a ”great filter“, something that wipes out intelligent civilizations at a rather early state of their technical development. Let that sink in.
All technical civilizations would start to build particle smashers to find out how the universe works, to get as close as possible to the big bang and to hunt for the smallest particle at bigger and bigger machines. But maybe there is a very unexpected effect lurking at a certain threshold that nobody would ever think of and that theory does not provide. Indeed, this could be a logical candidate for the “great filter”, an explanation for the Fermi paradox. If it was, a disastrous big bang machine eventually is not that big at all. Because if civilizations were to construct a collider of epic dimensions, a lack of resources would have stopped them in most cases.
Finally, the CERN member states will have to decide on the budget and the future course.
The political question behind is: How far are the ordinary citizens paying for that willing to go?
LHC-Critique / LHC-Kritik
Network to discuss the risks at experimental subnuclear particle accelerators
A machine which triples the time livers can survive outside the body promises to halve the transplant waiting list, experts have said as officials approved its use in the NHS.
Hundreds more patients with advanced liver disease — Britain’s fifth biggest killer — have hope of a successful transplant after the “game-changing” technique was given the green light by the National Institute of Health and Care Excellence (Nice).
Currently livers intended for transplant typically survive for only about eight to ten hours on ice.
An innovative tool for discovering new materials has shown promise for materials engineers. Throughout history, civilizations have been known by the tools they created and left behind. To create those tools, engineers in every era have had to access materials to accomplish their goals. In the modern era, this often led innovators to craft their own unique materials.
The research has been called a “game changer” in discovering new technologies and the materials to build those technologies.
Cancer is crafty, using a wide range of insidious tricks to ensure it can survive and spread in the body. But now researchers at Rush University and the University of California, San Diego have found a way to intervene in one of these schemes, preventing tumors from recruiting immune cells to help them grow and metastasize.
Missions like the Kepler Space Telescope and the newer Transiting Exoplanet Survey Satellite (TESS) have revealed thousands of exoplanets out there among the stars, but we know surprisingly little about them. To get up close and personal, we’re going to need extremely precise space telescopes. MIT scientists have proposed an innovative way to make sure those instruments remain calibrated and capable of peering at distant exoplanets. They suggest designers incorporate a smaller secondary satellite that can act as a “guide star” for the telescope.
Space researchers are anxious to get new super-sized telescopes in space because the equipment we have right now is only adept at finding planets and relaying basic information. Most exoplanets in the database were discovered via the transit method, which watches for dips in brightness as planets pass in front of their home stars. From this, we can often discern a planet’s size, orbit, and approximate temperature. To get detailed data about its atmosphere and composition, we need telescopes like the upcoming (and chronically delayed) James Webb Space Telescope.
Webb will offer much greater imaging prowess than Hubble because its primary mirror is larger, composed of 18 hexagonal segments with a total diameter of 6.5 meters. In the coming decades, space telescopes could reach 15 meters with as many as 100 mirror segments. Such telescopes would have a coronagraph, an instrument capable of separating the intense light of a star from the faint light of an exoplanet. If this measurement isn’t perfect, the telescope would be unable to resolve the details on a planet.