Toggle light / dark theme

For the first time, doctors have attempted to cure blindness by gene-hacking a patient with CRISPR technology.

A team from Oregon Health & Science Institute injected three droplets of fluid that delivered the CRISPR DNA fragments directly into a patient’s eyeball, The Associated Press reports, in hopes that it will reverse a rare genetic condition called Leber congenital amaurosis, which causes blindness early in childhood.

“We literally have the potential to take people who are essentially blind and make them see,” Charles Albright, chief scientific officer of Editas Medicine, told the AP.

World health officials said Tuesday the mortality rate for COVID-19 is 3.4% globally, higher than previous estimates of about 2%.

“Globally, about 3.4% of reported COVID-19 cases have died,” WHO Director-General Tedros Adhanom Ghebreyesus said during a press briefing at the agency’s headquarters in Geneva. In comparison, seasonal flu generally kills far fewer than 1% of those infected, he said.

For the first time, doctors have attempted to cure blindness by gene-hacking a patient with CRISPR technology.

A team from Oregon Health & Science Institute injected three droplets of fluid that delivered the CRISPR DNA fragments directly into a patient’s eyeball, The Associated Press reports, in hopes that it will reverse a rare genetic condition called Leber congenital amaurosis, which causes blindness early in childhood.

“We literally have the potential to take people who are essentially blind and make them see,” Charles Albright, chief scientific officer of Editas Medicine, told the AP. Editas is one of the biotech companies that actually developed the treatment. “We think it could open up a whole new set of medicines to go in and change your DNA.”

Another important question is the extent to which continued increases in computational capacity are economically viable. The Stanford Index reports a 300,000-fold increase in capacity since 2012. But in the same month that the Report was issued, Jerome Pesenti, Facebook’s AI head, warned that “The rate of progress is not sustainable…If you look at top experiments, each year the cost is going up 10-fold. Right now, an experiment might be in seven figures but it’s not going to go to nine or 10 figures, it’s not possible, nobody can afford that.”

AI has feasted on low-hanging fruit, like search engines and board games. Now comes the hard part — distinguishing causal relationships from coincidences, making high-level decisions in the face of unfamiliar ambiguity, and matching the wisdom and commonsense that humans acquire by living in the real world. These are the capabilities that are needed in complex applications such as driverless vehicles, health care, accounting, law, and engineering.

Despite the hype, AI has had very little measurable effect on the economy. Yes, people spend a lot of time on social media and playing ultra-realistic video games. But does that boost or diminish productivity? Technology in general and AI in particular are supposed to be creating a new New Economy, where algorithms and robots do all our work for us, increasing productivity by unheard-of amounts. The reality has been the opposite. For decades, U.S. productivity grew by about 3% a year. Then, after 1970, it slowed to 1.5% a year, then 1%, now about 0.5%. Perhaps we are spending too much time on our smartphones.

Rutgers engineers have created a tabletop device that combines a robot, artificial intelligence and near-infrared and ultrasound imaging to draw blood or insert catheters to deliver fluids and drugs.

Their most recent research results, published in the journal Nature Machine Intelligence, suggest that autonomous systems like the image-guided could outperform people on some complex medical tasks.

Medical robots could reduce injuries and improve the efficiency and outcomes of procedures, as well as carry out tasks with minimal supervision when resources are limited. This would allow to focus more on other critical aspects of medical care and enable emergency medical providers to bring advanced interventions and resuscitation efforts to remote and resource-limited areas.

Is it so outlandish to believe that countries in the future might resort to military force to prevent other countries from altering the shared genetic code of humanity? Many countries have been invaded for far less.


The genetics revolution that will transform our health care, the way we make babies, the nature of the babies we make, and ultimately our evolutionary trajectory as a species has already begun. Just like parents in many places will need to make tough choices about whether, if at all, to genetically engineer their children, states will be forced to make monumental collective decisions on these issues with potentially fateful consequences.

Imagine you are the leader of a society that has chosen to opt out of the genetic arms race by banning embryo selection and the genetic alteration of human sperm, eggs, and embryos. Because your country is progressive enough to make a collective decision like this, parents desiring these services are free to go elsewhere to get what they want. But preventing the genetic alteration of your population by definition requires both restricting genetic enhancement at home and enhanced people or expectant mothers carrying genetically altered embryos from entering your country.

To protect the genetic integrity of your populations and keep genetically enhanced people out, you would need to perform genetic tests on all people entering the country. But there would likely be no way of knowing whether a person had been genetically enhanced without knowledge of their genetic baseline—their genome prior to any changes. For those few people for whom genetic information from the moment a few days after their conception is available, their former and current genetics could be compared. Everyone not able to provide baseline genetic information might be banned from entering the country or threatened with long jail terms for procreating with a citizen of it.

CRISPR Used To Edit Genes Inside A Patient With A Rare Form Of Blindness : Shots — Health News Doctors used CRISPR to edit genes of cells inside a patient’s eye, hoping to restore vision to a person blinded by a rare genetic disorder. A similar strategy might work for some brain diseases.

negativity makes cancer growEverybody feels negative emotions once in a while, but these emotions have a stronger effect on your health than you may realize. Every time you think about regrets, experience resentment or replay bad memories in your head, your body suffers just as much as your mind. That’s why harboring negative emotions can lead to devastating long-term disease.

But there is one simple solution: forgiveness. Trouble is, our culture seems to perceive forgiveness as a sign of weakness, submission, or both. This makes it harder to actually do the work to forgive people who’ve done you harm.