Toggle light / dark theme

A research study in mice by investigators at the University of Rochester Medical Center (URMC) suggests it would be possible to repair the brain cell damage caused by multiple sclerosis (MS). The research was published in the journal Cell Reports.

The research, led by Steve Goldman, professor of Neurology and Neuroscience at URMC and co-director of the Center for Translational Neuromedicine, manipulated embryonic and induced pluripotent stem cells to create glia, a type of brain cell. Glial progenitor cells, a subtype of these cells, eventually form the primary support cells of the brain, astrocytes and oligodendrocytes, which play essential roles in the health and signaling behavior of nerve cells.

MS is an autoimmune disorder where the body’s immune system attacks oligodendrocytes. Oligodendrocytes manufacture myelin, which makes the insulation that allows nerve cells to communicate with each other. As myelin decreases in MS, the signaling between nerve cells is interrupted, which causes the loss of function that leads to problems with sensation, motor function and cognitive problems.

The interplay between the commensal microbiota and the mammalian immune system development and function includes multifold interactions in homeostasis and disease. The microbiome plays critical roles in the training and development of major components of the host’s innate and adaptive immune system, while the immune system orchestrates the maintenance of key features of host-microbe symbiosis. In a genetically susceptible host, imbalances in microbiota-immunity interactions under defined environmental contexts are believed to contribute to the pathogenesis of a multitude of immune-mediated disorders. Here, we review features of microbiome-immunity crosstalk and their roles in health and disease, while providing examples of molecular mechanisms orchestrating these interactions in the intestine and extra-intestinal organs. We highlight aspects of the current knowledge, challenges and limitations in achieving causal understanding of host immune-microbiome interactions, as well as their impact on immune-mediated diseases, and discuss how these insights may translate towards future development of microbiome-targeted therapeutic interventions.

Maryland reported its highest number of new COVID-19 cases on Tuesday—just four days after the state began easing public health restrictions aimed at thwarting the spread of disease.

Though state officials note that an increase in testing and a backlog of test results may partly explain the spike, the case counts overall suggest that disease transmission has not declined in the lead-up to re-opening—and transmission could very easily increase as residents begin venturing into public spaces more frequently.

Maryland’s outcome may hold lessons for other states attempting their own reopening. As of today, May 20, all 50 states have begun easing restrictions at some level, according to The Washington Post.

From testing drugs to developing vaccines, the close study of the immune system is key to improving real-world health outcomes. T-cells are integral to this research, as these white blood cells help tailor the body’s immune response to specific pathogens.

With lattice light-sheet microscopy (LLSM), scientists have been able to closely examine , such as T-cells, in 4D. But with limited data points, there wasn’t an effective way to analyze the LLSM data.

A new paper by researchers from the Pritzker School of Molecular Engineering (PME) at the University of Chicago, published May 20 in the journal Cell Systems, introduces a solution—a pipeline for lattice light-sheet microscopy multi-dimensional analyses (LaMDA).

After biomedical scientists demonstrated that they could make dangerous viruses like influenza even more dangerous, the National Institutes of Health (NIH) implemented a three-year moratorium on funding such research. But a couple of months ago, in December, the moratorium was lifted, and a tight set of rules were put in its place, such as a mandate for oversight panels.

The prospect of engineering a deadly pandemic virus in a laboratory suggests that only a fool would wish away government regulation entirely.

However, as a whole, regulation has done more harm than good in the arena of scientific innovation. The reason is that the sort of person who thinks like a bureaucratic regulator isn’t the sort of person who thinks like a scientist. The sad fact of the matter is that those most interested in the regulatory process tend to be motivated by politics and ideology rather than scientific inquiry and technological progress.

Apple’s AR glasses are supposedly called Apple Glass, a leaker revealed, and the product is set to be unveiled during the iPhone 12 launch event. The coronavirus health crisis might force Apple to postpone the reveal to the first quarter of next year.

The pandemic COVID-19 has spread to all over the world and greatly threatens safety and health of people. COVID-19 is highly infectious and with high mortality rate. As no effective antiviral treatment is currently available, new drugs are urgently needed. We employed transcriptional analysis to uncover potential antiviral drugs from natural products or FDA approved drugs. We found liquiritin significantly inhibit replication of SARS-CoV-2 in Vero E6 cells with EC50 = 2.39 μM. Mechanistically, we found liquiritin exerts anti-viral function by mimicking type I interferon. Upregulated genes induced by liquiritin are enriched in GO categories including type I interferon signaling pathway, negative regulation of viral genome replication and etc. In toxicity experiment, no death was observed when treated at dose of 300 mg/kg for a week in ICR mice. All the organ indexes but liver and serum biochemical indexes were normal after treatment. Liquiritin is abundant in licorice tablet (~0.2% by mass), a traditional Chinese medicine. Together, we recommend liquiritin as a competitive candidate for treating COVID-19. We also expect liquiritin to have a broad and potent antiviral function to other viral pathogens, like HBV, HIV and etc.

The authors have declared no competing interest.

A gene therapy trial performed on mice may foreshadow yet another way to hack fitness. In a study done by a team at Washington University in St. Louis’ medical school, mice quickly built muscle mass and reduced obesity after receiving the therapy, even while eating a diet high in fat and not exercising. The results were published last week in a paper in Science Advances.


The gene targeted was FST, which is responsible for making a protein called follistatin. In humans and most other mammals, follistatin helps grow muscle and control metabolism by blocking a protein called myostatin, which acts to restrain muscle growth and ensure muscles don’t get too big.

The researchers injected eight-week-old mice with a virus carrying a healthy FST gene (gene therapy involves adding healthy copies of a gene to cells, usually using a virus as a deliveryman).

Over a period of 18 weeks, or about 4 months, the team observed that the muscle mass of the treated mice more than doubled, as did their strength level. They also experienced reduced damage related to osteoarthritis, less inflammation in their joints, and had healthier hearts and blood vessels than mice that didn’t receive the gene therapy —even though all the mice ate the same high-fat diet and did the same amount of exercise.

Then there is the COVID-19 Open Research Dataset (CORD-19), a multi-institutional initiative that includes The White House Office of Science and Technology Policy, Allen Institute for AI, Chan Zuckerberg Initiative (CZI), Georgetown University’s Center for Security and Emerging Technology (CSET), Microsoft, and the National Library of Medicine (NLM) at the National Institutes of Health (NIH).

The goal of this initiative is to create new natural language processing and machine learning algorithms to scour scientific and medical literature to help researchers prioritize potential therapies to evaluate for further study. AI is also being used to automate screening at checkpoints by evaluating temperature via thermal cameras, as well as modulations in sweat and skin discoloration. What’s more, AI-powered robots have even been used to monitor and treat patients. In Wuhan, the original epicenter of the pandemic, an entire field hospital was transitioned into a “smart hospital” fully staffed by AI robotics.

Any time of great challenge is a time of great change. The waves of technological innovation that are occurring now will echo throughout eternity. Science, technology, engineering and mathematics are experiencing a call to mobilization that will forever alter the fabric of discovery in the fields of bioengineering, biomimicry and artificial intelligence. The promise of tomorrow will be perpetuated by the pangs of today. It is the symbiosis of all these fields that will power future innovations.

Every once in a while I have a contentious discussion with someone about traveling to Mars, and the risks involved. One of the hardest risks to describe is the threat from galactic cosmic rays. Here is a short article about a new facility investigating the effects of galactic cosmic rays.

The very important point here is that we are not discussing electromagnetic radiation. These ions have been shown to sometimes penetrate spacecraft and inflict damage on astronauts brains. Earthlings do not have to worry about these as much because we have a magnetosphere that shields us from ions.


To better understand and mitigate the health risks faced by astronauts from exposure to space radiation, we ideally need to be able to test the effects of Galactic Cosmic Rays (GCRs) here on Earth under laboratory conditions. An article publishing on May 19, 2020 in the open access journal PLOS Biology from Lisa Simonsen and colleagues at the NASA Langley Research Center, USA, describes how NASA has developed a ground-based GCR Simulator at the NASA Space Radiation Laboratory (NSRL), located at Brookhaven National Laboratory.

Galactic cosmic rays comprise a mixture of highly energetic protons, , and higher charge and energy ions ranging from lithium to iron, and they are extremely difficult to shield against. These ions interact with spacecraft materials and to create a complex mixed field of primary and secondary particles.

The from these heavy ions and mixtures of ions are poorly understood. Using recently developed fast beam switching and controls systems technology, NSRL demonstrated the ability to rapidly and repeatedly switch between multiple ion-energy beam combinations within a short period of time, while accurately controlling the extremely small daily doses delivered by the heavier ions.