Toggle light / dark theme

Well this is interesting:

A Henry Ford Health System study shows the controversial anti-malaria drug hydroxychloroquine helps lower the death rate of COVID-19 patients, the Detroit-based health system said Thursday.

Officials with the Michigan health system said the study found the drug “significantly” decreased the death rate of patients involved in the analysis.

The study analyzed 2,541 patients hospitalized among the system’s six hospitals between March 10 and May 2 and found 13% of those treated with hydroxychloroquine died while 26% of those who did not receive the drug died.


Heads of the Michigan health system said Thursday the study found the drug “significantly” decreased the death rate of patients.

Two documents dating back to 2015 shed further light on the role the federal government played in discovering remdesivir and its use in treating coronaviruses — work that has taken on new meaning as the Gilead Sciences (GILD) drug has gained global attention and an emergency use authorization from federal regulators to treat patients with Covid-19.


Reporting from the frontiers of health and medicine.

The maker of a drug shown to shorten recovery time for severely ill COVID-19 patients says it will charge $2,340 for a typical treatment course for people covered by government health programs in the United States and other developed countries.

Gilead Sciences announced the price Monday for remdesivir, and said the price would be $3,120 for patients with private insurance. The amount that patients pay out of pocket depends on insurance, income and other factors.

“We’re in uncharted territory with pricing a new medicine, a novel medicine, in a pandemic,” Gilead’s chief executive, Dan O’Day, told The Associated Press.

However, the situation has been improving as Chinese tech giants including e-commerce company Alibaba, search engine Baidu, on-demand delivery company Meituan Dianping, ride-hailing operator Didi Chuxing and smartphone maker Xiaomi now offer more affordable health care plans via mutual aid platforms, which operate as a collective claim-sharing mechanism.


China’s online mutual aid platforms are disrupting old school insurance companies by leveraging big data and internet finance technologies to offer low cost medical coverage.

If Dr. Mainprize felt proud of his role in the breakthrough, he didn’t show it.

He was well aware of the significance of this achievement; it was potentially the key to tackling a wide range of illnesses, from brain cancer to Parkinson’s disease and Alzheimer’s disease – illnesses that are currently impossible or hard to cure. But he also knew he and his team at Sunnybrook Health Sciences Centre still had a long way to go before their work translated into actual treatment for patients, said his close friend and colleague Nir Lipsman.

Now that the world is in the thick of the coronavirus pandemic, governments are quickly deploying their own cocktails of tracking methods. These include device-based contact tracing, wearables, thermal scanning, drones, and facial recognition technology. It’s important to understand how those tools and technologies work and how governments are using them to track not just the spread of the coronavirus, but the movements of their citizens.

Contact tracing is one of the fastest-growing means of viral tracking. Although the term entered the common lexicon with the novel coronavirus, it’s not a new practice. The Centers for Disease Control and Prevention (CDC) says contact tracing is “a core disease control measure employed by local and state health department personnel for decades.”

Traditionally, contact tracing involves a trained public health professional interviewing an ill patient about everyone they’ve been in contact with and then contacting those people to provide education and support, all without revealing the identity of the original patient. But in a global pandemic, that careful manual method cannot keep pace, so a more automated system is needed.

While some cholesterol is a healthy thing for properly functioning cells, too much of it can cause blockages in the arteries and heart trouble, along with a host of other negative health outcomes. Scientists have discovered a new mechanism by which a “bad” type of cholesterol gains entry to the cells, identifying a pair of proteins that work like an entry tunnel. These proteins show promise as new targets for drugs that could lower cholesterol levels in the blood to help prevent disease.

The discovery made by an international team of researchers was only possible thanks to advances in imaging technology that enabled them to inspect proteins at a near-atomic level. In this case, the team were investigating the role two proteins, NPC1 and NPC2, play in transporting low-density lipoprotein (LDL) cholesterol, often referred to as “bad” cholesterol, into our cells.

“Before 2013 we often had to theorise about how membrane proteins worked and how they functioned, but now we can actually see them, and seeing is believing,” says study author Prof Rob Yang from the UNSW in Australia. “We were able to look at the NPC1 and NPC2 proteins and see exactly the role they play in transporting this LDL cholesterol into the cell.”

The loose alliance, whose backers include Infosys Ltd. co-founders Nandan Nilekani and Kris Gopalakrishnan as well as prominent startups from Practo to Policybazaar, will be formally unveiled as soon as this week in an attempt to salvage a decrepit system by digitizing everything from patient data and records to creating online platforms for hospital care and doctor consultations. Called Swasth — meaning health in Hindi — its 100-plus members have pledged to build new services and coordinate efforts to improve emergency responses.


Some of India’s richest people form an alliance with tech entrepreneurs to fix the country’s broken healthcare system.

The role genetics and gut bacteria play in human health has long been a fruitful source of scientific enquiry, but new research marks a significant step forward in unraveling this complex relationship. Its findings could transform our understanding and treatment of all manner of common diseases, including obesity, irritable bowel syndrome, and Alzheimer’s disease.

The international study, led by the University of Bristol and published today in Nature Microbiology, found specific changes in DNA — the chains of molecules comprising our genetic make-up — affected both the existence and amount of particular bacteria in the gut.

Lead author Dr David Hughes, Senior Research Associate in Applied Genetic Epidemiology, said: “Our findings represent a significant breakthrough in understanding how genetic variation affects gut bacteria. Moreover, it marks major progress in our ability to know whether changes in our gut bacteria actually cause, or are a consequence of, human disease.”

With a new nanoparticle that converts light to heat, a team of researchers has found a promising technology for clearing water of pollutants.

Trace amounts of contaminants such as pesticides, pharmaceuticals and perfluorooctanoic acid in drinking water sources have posed significant health risks to humans in recent years. These micropollutants have eluded conventional treatment processes, but certain chemical processes that typically involve ozone, hydrogen peroxide or UV light have proven effective. These processes, however, can be expensive and energy-intensive.

A new nanoparticle created by Yale University engineers as part of an effort for the Rice-based Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT) could lead to technologies that get around those limitations. The particle is described in a study published this week in the Proceedings of the National Academy of Sciences.