Toggle light / dark theme

Sure, it can beat Ken Jennings at Jeopardy, tell you about your city, and dream up recipes for delectable delicacies, but now, IBM’s Watson is doing something even more important than all previous capabilities combined — it’s finally getting closer to becoming your doctor. Last April, the century-old company launched IBM Watson Health, and now, it’s opened up a new office in Cambridge, Massachusetts, home to some of the best universities in the U.S., and some of the most impressive biotech and pharmaceutical companies as well. In the last few months, Watson has already expanded its scope to take on some of our most pressing health issues and diseases, including cancer and diabetes, and with this new establishment, it seems that the supercomputer will only be taking on greater responsibilities in the industry.

More exciting still is the announcement that Deborah DiSanzo, the former CEO of Philips Healthcare, will be leading the unit as its general manager. Under her leadership, IBM hopes that Watson Health will be able to grow and further expand its massive cloud computing capabilities, which the company believes holds significant potential for modern health care. While current “health record systems can do great job storing data,” Mike Rhodin, senior vice president of the IBM Watson Group, told Fortune, “Watson can summarize that data and incorporate nurse and doctor’s notes to give a more complete picture.”

Related: IBM is bringing sports into the digital age, starting with the U.S. Open.

Read more

Checkout the latest Longevity Reporter Newsletter (05th September, 2015), covering this week’s top news in health, aging, longevity.

This week: Dramatic Advances In Super-Resolution Imaging; This Stunning 3-D Model Provides A Fresh Perspective On Cancer; Want A Long Lifespan? You Need Stable Gene Networks; The Future Of Health: Precision Medicine; And more.

Read more

You may have heard of precision medicine in the news, but what actually is it, and what could it mean for the future of healthcare?

In the past, medicine was geared for the masses and was applied to large numbers of people, on the basis of average effectiveness. If a particular substance was ineffective on 10% of the population, it could still pass through and be prescribed anyway. Before genomics, it was tricky to understand or postulate why people had such varied responses to medication, but now we have the right tools — things are changing.

While all humans have extremely similar genes in percentage terms, there are distinct differences in each of us that create our particular vulnerabilities and characteristics. We also respond differently to many treatments; a cure for one might be mediocre for another. This is particularly true for cancer. With the Precision Medicine Initiative taking off, taking into account genetics, lifestyle and environment is beginning to give us an edge — making medicine more accurate and effective.

Read more

New Device Brings ‘Dead’ Hearts Back to Life.

“Heart transplants only come from brain-dead donors whose hearts are cut away while their bodies are still healthy. Without a device such as this, hearts from dead donors are considered by surgeons as too damaged to use. With the device, the heart gets the essential infusion of blood to restore its energy.”

Video Credit: TransMedics.

Read more

Heales, The Healthy Life Extension Society, is dedicated to promoting and informing the public about life extension and longevity breakthroughs. In this spirit, Heales has announced a Short Film Competition with a grand prize of €3.000. Heales wants you to capture why living longer, healthier lives will be something to celebrate, not fear.

We caught up with Didier Cournelle, director of the society, to find out more about the competition:

Why do you think there are so few positive portrayals of longevity and life extension in the media? In general, the press prefers bad news to good news. Good news concerning longevity is difficult to describe because it is often made of small, incremental progress. Another aspect is that the idea of radical life extension looks fringe to many people. Last aspect: to speak about longevity is to speak about death and unconsciously, we tend to avoid what reminds us of our own death.

Read more

A consortium of top tech companies, laboratories, and universities is partnering with the Department of Defense to improve the manufacturing of flexible electronics, which could one day end up in aircraft, health monitors, military tools, or consumer electronics like wearables. The department is awarding the consortium, known as the FlexTech Alliance, $75 million over five years, with other sources, including universities, non-profits, and state and local governments, contributing an additional $96 million.

The consortium is composed of well over 100 organizations, with key partners including Apple, Boeing, GE, GM, Lockheed Martin, Motorola Mobility, and Qualcomm, among many others. Partnering universities include Cornell, Harvard, Stanford, NYU, and MIT, also among many others.

Funds will be distributed to FlexTech members through a bidding process, with field experts from these organizations applying to tackle specific problems. Timelines will be set for each of these, though there don’t appear to be specific goals just yet.

Read more

The circadian rhythm is a subject of many studies, yet it remains a mystery in many ways. While scientists have identified many of the cell proteins involved in circadian rhythm and several genes that contribute to a healthy rhythm, the ‘master clock’ gene remained elusive. However, a recent chronobiology study on rats indicates that the Zfhx3, or Zinc Finger Homeobox 3, gene may be the master gene that dictates this important biological rhythm.

Read more

Most cancer-busting strategies focus on removing cancerous cells. While this approach has proved extremely effective on many patients, most treatments have unpleasant side effects and there are many strains which prove extremely challenging to remove. An alternative model to this is to alter instead of remove — fixing cancerous behaviour by ‘reprogramming’ cells that go rogue; essentially swiss finishing school for cellular miscreants. A study published in Nature Cell Biology now provides hope that this tactic could in fact work in many cancers.

Researchers from Mayo Clinic’s Florida campus have found that adhesion proteins, which act like a glue sticking cells together, actually interact with a cell’s ‘microprocessor’. This processor creates molecules called miRNAs, which regulate multiple genes and essentially activate or de-activate different behavioural programs (like commands in computer programming). When healthy cells bump into a neighbour and begin to glue together, these adhesion proteins normally influence both cells — tuning down growth pathways. In cancer, the lab found this adhesion is perturbed; de-regulating miRNA production and enabling rampant growth. When scientists corrected these miRNA levels, the growth was arrested.

“The study brings together two so-far unrelated research fields — cell-to-cell adhesion and miRNA biology — to resolve a long-standing problem about the role of adhesion proteins in cell behavior that was baffling scientists. Most significantly, it uncovers a new strategy for cancer therapy”

Read more