Toggle light / dark theme

California Dreams Video 1 from IFTF on Vimeo.

INSTITUTE FOR THE FUTURE ANNOUNCES CALIFORNIA DREAMS:
A CALL FOR ENTRIES ON IMAGINING LIFE IN CALIFORNIA IN 2020

Put yourself in the future and show us what a day in your life looks like. Will California keep growing, start conserving, reinvent itself, or collapse? How are you living in this new world? Anyone can enter,anyone can vote; anyone can change the future of California!

California has always been a frontier—a place of change and innovation, reinventing itself time and again. The question is, can California do it again? Today the state is facing some of its toughest challenges. Launching today, IFTF’s California Dreams is a competition with an urgent challenge to recruit citizen visions of the future of California—ideas for what it will be like to live in the state in the next decade—to start creating a new California dream.

California Dreams calls upon the public look 3–10 years into the future and tell a story about a single day in their own life. Videos, graphical entries, and stories will be accepted until January 15, 2011. Up to five winners will be flown to Palo Alto, California in March to present their ideas and be connected to other innovative thinkers to help bring these ideas to life. The grand prize winner will receive the $3,000 IFTF Roy Amara Prize for Participatory Foresight.

“We want to engage Californians in shaping their lives and communities” said Marina Gorbis, Executive Director of IFTF. “The California Dreams contest will outline the kinds of questions and dilemmas we need to be analyzing, and provoke people to ask deep questions.”

Entries may come from anyone anywhere and can include, but are not limited to, the following: Urban farming, online games replacing school, a fast food tax, smaller, sustainable housing, rise in immigrant entrepreneurs, mass migration out of state. Participants are challenged to use IFTF’s California Dreaming map as inspiration, and picture themselves in the next decade, whether it be a future of growth, constraint, transformation, or collapse.

The grand prize, called the Roy Amara Prize, is named for IFTF’s long-time president Roy Amara (1925−2000) and is part of a larger program of social impact projects at IFTF honoring his legacy, known as The Roy Amara Fund for Participatory Foresight, the Fund uses participatory tools to translate foresight research into concrete actions that address future social challenges.

PANEL OF COMPETITION JUDGES

Gina Bianchini, Entrepreneur in Residence, Andreessen Horowitz

Alexandra Carmichael, Research Affiliate, Institute for the Future, Co-Founder, CureTogether, Director, Quantified Self

Bill Cooper, The Urban Water Research Center, UC Irvine

Poppy Davis, Executive Director, EcoFarm

Jesse Dylan, Founder of FreeForm, Founder of Lybba

Marina Gorbis, Executive Director, Institute for the Future

David Hayes-Bautista, Professor of Medicine and Health Services,UCLA School of Public Health

Jessica Jackley, CEO, ProFounder

Xeni Jardin, Partner, Boing Boing, Executive Producer, Boing Boing Video

Jane McGonigal, Director of Game Research and Development, Institute for the Future

Rachel Pike, Clean Tech Analyst, Draper Fisher Jurvetson

Howard Rheingold, Visiting Professor, Stanford / Berkeley, and theInstitute of Creative Technologies

Tiffany Shlain, Founder, The Webby Awards
Co-founder International Academy of Digital Arts and Sciences

Larry Smarr
Founding Director, California Institute for Telecommunications and Information Technology (Calit2), Professor, UC San Diego

DETAILS

WHAT: An online competition for visions of the future of California in the next 10 years, along one of four future paths: growth, constraint, transformation, or collapse. Anyone can enter, anyone can vote, anyone can change the future of California.

WHEN: Launch – October 26, 2010
Deadline for entries — January 15, 2011
Winners announced — February 23, 2011
Winners Celebration — 6 – 9 pm March 11, 2011 — open to the public

WHERE: http://californiadreams.org

For more information on the California Dreaming map or to download the pdf, click here.

(End of series. For previous topics please see parts I-IX)

Power plants. Trees could do a lot, as we have seen — and they’re solar powered, too. Once trees can suck metals from the soil and grow useful, shaped objects like copper wire, a few more levels of genetic engineering could enable the tree to use this copper wire to deliver electricity. Since a tree is already, now, a solar energy converter, we can build on that by having the tree grow tissues that convert energy into electricity. Electric eels can already do that, producing enough of a jolt to be lethal to humans. Even ordinary fish produce small amounts of electricity to create electric fields in the water around them. Any object nearby disrupts the field, enabling the fish to tell that something is near, even in total darkness. We may never be able to plug something into a swimming fish but we can already make batteries out of potatoes. So why not trees that grow into electricity providers all by themselves? It would be great to be able to plug your electrical devices into a tree (or at least a socket in your house that is connected to the tree). Then you would no longer need to connect to the grid, purchase solar panels, or install a windmill. You would, however, need to keep your trees healthy and vigorous! Tree care specialists would become a highly employable occupation.

Greening the desert. The Sahara and various other less notorious but still very dry deserts around the world have plenty of sand and rocks. But they don’t have much greenery. The main problem is lack of water. Vast swaths of the Sahara, for example, are plant free. It’s just too dry. However this problem is solvable! Cacti and other desert plants could potentially extract water from the air. Plants already extract carbon dioxide molecules from the air. Even very dry air contains considerable water vapor, so why not extract water molecules too. Indeed, plants already transport water molecules in the ground into their roots, so is it really such a big step to do the same from the air? Tillandsia (air plant) species can already pull in water with their leaves, but it has to be rain or other liquid water. Creating plants that can extract gaseous water vapor from the air in a harsh desert environment would require sophisticated genetic engineering, or a leap for mother nature, but it is still only the first step. Plants get nutrients out of the soil by absorbing fluid that has dissolved them, so dry soil would be a problem even for a plant that contained plenty of water pulled from the air. Another level of genetic engineering or natural evolution would be required to enable them to secrete fluid out of their roots to moisten chunks of soil to dissolve its minerals, and reabsorb the now nutritious, mineral-laden liquid back into their roots.

Once this difficult task is accomplished, whether by natural evolution in the distant future or genetic engineering sooner, things will be different in the desert. Canopies of vegetation that hide the ground will be possible. Thus shaded and sheltered, the ground will be able to support a much richer ecosystem of creatures and maybe even humans than is currently the case in deserts. One of Earth’s harshest environments would be tamed.

Phyto-terraforming. To terraform means to transform a place into an Earth-like state (terra is Latin for Earth). Mars for example is a desert wasteland, but it once ran with rivers, and it would be great if the Martian surface was made habitable — in other words, terraformed. Venus might be made habitable if we could only get rid of its dense blanket of carbon dioxide, which causes such a severe greenhouse effect that its surface is over 800 degrees Fahrenheit, toasty indeed. And why not consider terraforming inhospitable terrain right here on earth, like the Sahara desert, or Antarctica. Phyto-terraforming is terraforming using plants. Actually plants are so favored for this task that when people discuss terraforming, they usually mean phyto-terraforming. Long ago, plants did in fact terraform the Earth, converting a hostile atmosphere with no oxygen but plenty of carbon dioxide into a friendly one with enough oxygen that we can comfortably exist. Plants worked on Earth, and might work on Mars or even Venus, but not on the moon. The reason is that plants need carbon dioxide and water. Venus has these (and reasonable temperatures) high in the atmosphere, suggesting airborne algae cells. Mars is a more likely bet as it has water (as ice) available to surface-dwelling plants at least in places.

If Mars is the most likely candidate for phyto-terraforming, what efforts have been made to move in that direction? A first step has been to splice genes into ordinary plants from an organism that lives in hot water associated with deep ocean thermal vents. This organism is named Pyrococcus furiosus (Pyro- means fire in Greek, coccus refers to ball-shaped bacteria, hence “fireball”). Pyrococcus is most comfortable living at about the boiling point of water and can grow furiously, double its population in 37 minutes. It has evolved genes for destroying free radicals that work better than those naturally present in plants. Free radicals are produced by certain stressors in plants (and humans), cause cell damage, and can even lead to death of the organism. By splicing such genes into the plant Arabidopsis thaliana, the experimental mouse of plant research, this small and nondescript-looking plant can be made much more resistant to heat and lack of water. These genes have also been spliced into tomatoes, which could help feed future colonists. Of course Mars requires cold, not heat tolerance, but the lack of water part is a good start. The heat and drought parts might be useful for building plants to terraform deserts here on Earth, bringing terraforming of Earth deserts a couple of steps closer. With several additional levels of genetic modification, we might eventually terraform Mars yet.

Recommendations

When the advances described here are likely to happen would be good to know. Will they occur in your lifetime? Your grandchildren’s? Thousands or millions of years into the future? If the latter, there is not much point in devoting precious national funds to help bring them about, but if the former, it might be worth the expense of hurrying the process along. To determine the likely timing of future technological advances, we need to determine the speed of advancement. To measure this speed, we can look at the rate at which advances have occurred in the past, and ask what will happen in the future if advances continue along at the same rate. This approach is influential in the modern computer industry in the guise of “Moore’s Law.” However it was propounded at least as early as about 2,500 years ago, when Chinese philosopher Confucius is said to have noted, “Study the past if you would divine the future.” It would be nice to know when we can expect to grow and eat potatoes with small hamburgers in the middle, pluck nuggets of valuable metals from trees, power our homes by plugging into electricity-generating trees growing in our back yards, or terraform Mars.

Opening the floodgates of genetic engineering innovation. Properly regulated to optimally benefit society, genetic engineering of plants has enormous potential, from better and better-tasting food to growing amazing things on trees. However governmental regulation is currently suppressing such advances. Preparing applications to government regulatory agencies for permission to commercially grow genetically engineered plants currently costs many millions of dollars in many countries. Thus only genetic modifications to major commodity crops like corn and soy are generally cost-effective to commercialize. Worse, only big agribusinesses can afford the costs. And why should they object? After all, who needs small, game-changing startup companies moving in, upending the status quo, creating new economic growth and value with new kinds of crops, and generally making life complicated for the giant agribusinesses? Simpler just to keep the costs of applying for permission to grow so high that such upstarts are kept out of the picture. That way predictable profits flow in even if, overall, innovation and the consequent economic expansion is suppressed. But you can’t blame the giants, which are legally obligated to serve the interests of their shareholders. It is illegal for a corporation in the US to further the interests of society at substantial expense to its shareholders! Governments should regulate commercialization of genetically engineered crops optimally, protecting the world from harmful frankenplants while promoting exciting, progressive and beneficial crop innovations.

References

“We may never be able to plug something into a swimming fish, but we can already make batteries out of potatoes.” A. Golberg, H. D. Rabinowitch, and B. Rubinsky, Zn/Cu-vegetative batteries, bioelectrical characterizations, and primary cost analyses, Journal of Renewable Sustainable Energy (2010), Vol. 2, Issue 3, http://jrse.aip.org/jrsebh/v2/i3/p033103_s1, doi:10.1063/1.3427222.

“This organism is named Pyrococcus furiosus…”: G. Fiala and K. O. Stetter, Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C, Archives of Microbiology (June 1986), vol. 145, no. 1, pp. 56–61.

“By splicing such genes into the plant Arabidopsis thaliana…this small and nondescript-looking plant can be made much more resistant to heat and lack of water.” W. F. Boss and A. M. Grunden, Redesigning living organisms to survive on Mars, NASA Institute for Advance Concepts Annual Meeting (2006), http://www.niac.usra.edu/files/library/meetings/annual/oct06/1194Boss.pdf

“They have also been spliced into tomatoes, which could help feed future colonists.” W. Boss, http://www.cals.ncsu.edu/plantbiology/BossLab/hfiles/overview.html, 5/29/10.

An obvious next step in the effort to dramatically lower the cost of access to low Earth orbit is to explore non-rocket options. A wide variety of ideas have been proposed, but it’s difficult to meaningfully compare them and to get a sense of what’s actually on the technology horizon. The best way to quantitatively assess these technologies is by using Technology Readiness Levels (TRLs). TRLs are used by NASA, the United States military, and many other agencies and companies worldwide. Typically there are nine levels, ranging from speculations on basic principles to full flight-tested status.

The system NASA uses can be summed up as follows:

TRL 1 Basic principles observed and reported
TRL 2 Technology concept and/or application formulated
TRL 3 Analytical and experimental critical function and/or characteristic proof-of concept
TRL 4 Component and/or breadboard validation in laboratory environment
TRL 5 Component and/or breadboard validation in relevant environment
TRL 6 System/subsystem model or prototype demonstration in a relevant environment (ground or space)
TRL 7 System prototype demonstration in a space environment
TRL 8 Actual system completed and “flight qualified” through test and demonstration (ground or space)
TRL 9 Actual system “flight proven” through successful mission operations.

Progress towards achieving a non-rocket space launch will be facilitated by popular understanding of each of these proposed technologies and their readiness level. This can serve to coordinate more work into those methods that are the most promising. I think it is important to distinguish between options with acceleration levels within the range human safety and those that would be useful only for cargo. Below I have listed some non-rocket space launch methods and my assessment of their technology readiness levels.

Spacegun: 6. The US Navy’s HARP Project launched a projectile to 180 km. With some level of rocket-powered assistance in reaching stable orbit, this method may be feasible for shipments of certain forms of freight.

Spaceplane: 6. Though a spaceplane prototype has been flown, this is not equivalent to an orbital flight. A spaceplane will need significantly more delta-v to reach orbit than a suborbital trajectory requires.

Orbital airship: 2. Though many subsystems have been flown, the problem of atmospheric drag on a full scale orbital airship appears to prevent this kind of architecture from reaching space.

Space Elevator: 3. The concept may be possible, albeit with major technological hurdles at the present time. A counterweight, such as an asteroid, needs to be positioned above geostationary orbit. The material of the elevator cable needs to have a very high tensile strength/mass ratio; no satisfactory material currently exists for this application. The problem of orbital collisions with the elevator has also not been resolved.

Electromagnetic catapult: 4. This structure could be built up the slope of a tall mountain to avoid much of the Earth’s atmosphere. Assuming a small amount of rocket power would be used after a vehicle exits the catapult, no insurmountable technological obstacles stand in the way of this method. The sheer scale of the project makes it difficult to develop the technology past level 4.

Are there any ideas we’re missing here?

For any assembly or structure, whether an isolated bunker or a self sustaining space colony, to be able to function perpetually, the ability to manufacture any of the parts necessary to maintain, or expand, the structure is an obvious necessity. Conventional metal working techniques, consisting of forming, cutting, casting or welding present extreme difficulties in size and complexity that would be difficult to integrate into a self sustaining structure.

Forming requires heavy high powered machinery to press metals into their final desired shapes. Cutting procedures, such as milling and lathing, also require large, heavy, complex machinery, but also waste tremendous amounts of material as large bulk shapes are cut away emerging the final part. Casting metal parts requires a complex mold construction and preparation procedures, not only does a negative mold of the final part need to be constructed, but the mold needs to be prepared, usually by coating in ceramic slurries, before the molten metal is applied. Unless thousands of parts are required, the molds are a waste of energy, resources, and effort. Joining is a flexible process, and usually achieved by welding or brazing and works by melting metal between two fixed parts in order to join them — but the fixed parts present the same manufacturing problems.

Ideally then, in any self sustaining structure, metal parts should be constructed only in the final desired shape but without the need of a mold and very limited need for cutting or joining. In a salient progressive step toward this necessary goal, NASA demonstrates the innovative Electron Beam Free Forming Fabrication (http://www.aeronautics.nasa.gov/electron_beam.htm) Process. A rapid metal fabrication process essentially it “prints” a complex three dimensional object by feeding a molten wire through a computer controlled gun, building the part, layer by layer, and adding metal only where you desire it. It requires no molds and little or no tooling, and material properties are similar to other forming techniques. The complexity of the part is limited only by the imagination of the programmer and the dexterity of the wire feed and heating device.

Electron beam freeform fabrication process in action
Electron beam freeform fabrication process in action

According to NASA materials research engineer Karen Taminger, who is involved in developing the EBF3 process, extensive simulations and modeling by NASA of long duration space flights found no discernable pattern to the types of parts which failed, but the mass of the failed parts remained remarkably consistent throughout the studies done. This is a favorable finding to in-situe parts manufacturing and because of this the EBF³ team at NASA has been developing a desktop version. Taminger writes:

“Electron beam freeform fabrication (EBF³) is a cross-cutting technology for producing structural metal parts…The promise of this technology extends far beyond its applicability to low-cost manufacturing and aircraft structural designs. EBF³ could provide a way for astronauts to fabricate structural spare parts and new tools aboard the International Space Station or on the surface of the moon or Mars”

NASA’s Langley group working on the EBF3 process took their prototype desktop model for a ride on the microgravity simulating NASA flight and found the process works just fine even in micro gravity, or even against gravity.

A structural metal part fabricated from EBF³
A structural metal part fabricated from EBF³

The advantages this system offers are significant. Near net shape parts can be manufactured, significantly reducing scrap parts. Unitized parts can be made — instead of multiple parts that need riveting or bolting, final complex integral structures can be made. An entire spacecraft frame could be ‘printed’ in one sitting. The process also creates minimal waste products and is highly energy and feed stock efficient, critical to self sustaining structures. Metals can be placed only where they are desired and the material and chemistry properties can be tailored through the structure. The technical seminar features a structure with a smooth transitional gradient from one alloy to another. Also, structures can be designed specifically for their intended purposes, without needing to be tailored to manufacturing process, for example, stiffening ridges can be curvilinear, in response to the applied forces, instead of typical grid patterns which facilitate easy conventional manufacturing techniques. Manufactures, such as Sciaky Inc, (http://www.sciaky.com/64.html) are all ready jumping on the process

In combination with similar 3D part ‘printing’ innovations in plastics and other materials, the required complexity for sustaining all the mechanical and structural components of a self sustaining structure is plummeting drastically. Isolated structures could survive on a feed stock of scrap that is perpetually recycled as worn parts are replaced by free form manufacturing and the old ones melted to make new feed stock. Space colonies could combine such manufacturing technologies and scrap feedstock with resource collection creating a viable minimal volume and energy consuming system that could perpetually repair the structure – or even build more. Technologies like these show that the atomic level control that nanotechnology manufacturing proposals offer are not necessary to create self sustaining structure, and that with minor developments of modern technology, self sustaining structures could be built and operated successfully.

Jim Davies of Strike the Root writes about Galt’s Gulch and some gulch-like projects. These appeal to him because of the exponential trends in government power and abuse of power. He writes, in part,

“We have the serious opportunity in our hands right now of terminating the era of government absolutely, and so of removing from the human race the threat of ever more brutal tyranny ending only with WMD annihilation–while opening up vistas of peaceful prosperity and technological progress which even a realist like myself cannot find words to describe. ”

http://www.strike-the-root.com/91/davies/davies11.html

Avoiding those terrible events is what building our Lifeboat is all about. Got Lifeboat?

Image from The Road film, based on Cormac McCarthy's book

How About You?
I’ve just finished reading Cormac McCarthy’s The Road at the recommendation of my cousin Marie-Eve. The setting is a post-apocalyptic world and the main protagonists — a father and son — basically spend all their time looking for food and shelter, and try to avoid being robbed or killed by other starving survivors.

It very much makes me not want to live in such a world. Everybody would probably agree. Yet few people actually do much to reduce the chances of of such a scenario happening. In fact, it’s worse than that; few people even seriously entertain the possibility that such a scenario could happen.

People don’t think about such things because they are unpleasant and they don’t feel they can do anything about them, but if more people actually did think about them, we could do something. We might never be completely safe, but we could significantly improve our odds over the status quo.

Danger From Two Directions: Ourselves and Nature.

Human technology is becoming more powerful all the time. We already face grave danger from nuclear weapons, and soon molecular manufacturing technologies and artificial general intelligence could pose new existential threats. We are also faced with slower, but serious, threats on the environmental side: Global warming, ocean acidification, deforestation/desertification, ecosystem collapse, etc.

Continue reading “I Don’t Want To Live in a Post-Apocalyptic World” | >

The projected size of Barack Obama’s “stimulus package” is heading north, from hundreds of billions of dollars into the trillions. And the Obama program comes, of course, on top of the various Bush administration bailouts and commitments, estimated to run as high as $8.5 trillion.

Will this money be put to good use? That’s an important question for the new President, and an even more important question for America. The metric for all government spending ultimately comes down to a single query: What did you get for it?

If such spending was worth it, that’s great. If the country gets victory in war, or victory over economic catastrophe, well, obviously, it was worthwhile. The national interest should never be sacrificed on the altar of a balanced budget.

So let’s hope we get the most value possible for all that money–and all that red ink. Let’s hope we get a more prosperous nation and a cleaner earth. Let’s also hope we get a more secure population and a clear, strategic margin of safety for the United States. Yet how do we do all that?

There’s only one best way: Put space exploration at the center of the new stimulus package. That is, make space the spearhead rationale for the myriad technologies that will provide us with jobs, wealth, and vital knowhow in the future. By boldly going where no (hu)man has gone before, we will change life here on earth for the better.

To put it mildly, space was not high on the national agenda during 2008. But space and rocketry, broadly defined, are as important as ever. As Cold War arms-control theology fades, the practical value of missile defense–against superpowers, also against rogue states, such as Iran, and high-tech terrorist groups, such as Hezbollah and Hamas–becomes increasingly obvious. Clearly Obama agrees; it’s the new President, after all, who will be keeping pro-missile defense Robert Gates on the job at the Pentagon.

The bipartisan reality is that if missile offense is on the rise, then missile defense is surely a good idea. That’s why increasing funding for missile defense engages the attention of leading military powers around the world. And more signs appear, too, that the new administration is in that same strategic defense groove. A January 2 story from Bloomberg News, headlined “Obama Moves to Counter China With Pentagon-NASA Link,” points the way. As reported by Demian McLean, the incoming Obama administration is looking to better coordinate DOD and NASA; that only makes sense: After all, the Pentagon’s space expenditures, $22 billion in fiscal year 2008, are almost a third more than NASA’s. So it’s logical, as well as economical, to streamline the national space effort.

That’s good news, but Obama has the opportunity to do more. Much more.

Throughout history, exploration has been a powerful strategic tool. Both Spain and Portugal turned themselves into superpowers in the 15th and 16th century through overseas expansion. By contrast, China, which at the time had a technological edge over the Iberian states, chose not to explore and was put on the defensive. Ultimately, as we all know, China’s retrograde policies pushed the Middle Kingdom into a half-millennium-long tailspin.

Further, we might consider the enormous advantages that England reaped by colonizing a large portion of the world. Not only did Britain’s empire generate wealth for the homeland, albeit often cruelly, but it also inspired technological development at home. And in the world wars of the 20th century, Britain’s colonies, past and present, gave the mother country the “strategic depth” it needed for victory.

For their part, the Chinese seem to have absorbed these geostrategic lessons. They are determined now to be big players in space, as a matter of national grand strategy, independent of economic cycles. In 2003, the People’s Republic of China powered its first man into space, becoming only the third country to do so. And then, more ominously, in 2007, China shot down one of their own weather satellites, just to prove that they had robust satellite-killing capacity.

Thus the US and all the other space powers are on notice: In any possible war, the Chinese have the capacity to “blind” our satellites. And now they plan to put a man on the moon in the next decade. “The moon landing is an extremely challenging and sophisticated task,” declared Wang Zhaoyao, a spokesman for China’s space program, in September, “and it is also a strategically important technological field.”

India, the other emerging Asian superpower, is paying close attention to its rival across the Himalayas. Back in June, The Washington Times ran this thought-provoking headline: “China, India hasten arms race in space/U.S. dominance challenged.” According to the Times report, India, possessor of an extensive civilian satellite program, means to keep up with emerging space threats from China, by any means necessary. Army Chief of Staff Gen. Deepak Kapoor said that his country must “optimize space applications for military purposes,” adding, “the Chinese space program is expanding at an exponentially rapid pace in both offensive and defensive content.” In other words, India, like every other country, must compete–because the dangerous competition is there, like it or not.

India and China have fought wars in the past; they obviously see “milspace” as another potential theater of operations. And of course, Japan, Russia, Brazil, and the European Union all have their own space programs.

Space exploration, despite all the bonhomie about scientific and economic benefit for the common good, has always been driven by strategic competition. Beyond mere macho “bragging rights” about being first, countries have understood that controlling the high ground, or the high frontier, is a vital military imperative. So we, as a nation, might further consider the value of space surveillance and missile defense. It’s hard to imagine any permanent peace deal in the Middle East, for example, that does not include, as an additional safeguard, a significant commitment to missile and rocket defense, overseen by impervious space satellites. So if the U.S. and Israel, for example, aren’t there yet, well, they need to get there.

Americans, who have often hoped that space would be a demilitarized preserve for peaceful cooperation, need to understand that space, populated by humans and their machines, will be no different from earth, populated by humans and their machines. That is, every virtue, and every evil, that is evident down here will also be evident up there. If there have been, and will continue to be, arms races on earth, then there will be arms races in space. As we have seen, other countries are moving into space in a big way–and they will continue to do so, whether or not the U.S. participates.

Meanwhile, in the nearer term, if the Bush administration’s “forward strategy of freedom”–the neoconservative idea that we would make America safe by transforming the rest of the world–is no longer an operative policy, then we will, inevitably, fall back on “defense” as the key idea for making America safe.

But in the short run, of course, the dominant issue is the economy. Aside from the sometimes inconvenient reality that national defense must always come first, the historical record shows that high-tech space work is good for the economy; the list of spinoffs from NASA, spanning the last half-century, is long and lucrative.

Moreover, a great way to guarantee that the bailout/stimulus money is well spent is to link it to a specific goal–a goal which will in turn impose discipline on the spenders. During the New Deal, for example, there were many accusations of malfeasance against FDR’s “alphabet soup” of agencies, and yet the tangible reality, in the 30s, was that things were actually getting done. Jobs were created, and, just as more important, enduring projects were being built; from post offices to Hoover Dam to the Tennessee Valley Authority, America was transformed.

Even into the 50s and 60s, the federal government was spending money on ambitious and successful projects. The space program was one, but so was the interstate highway program, as well as that new government startup, ARPANET.

Indeed, it could be argued that one reason the federal government has grown less competent and more flabby over the last 30 years is the relative lack of “hard” Hamiltonian programs–that is, nuts and bolts, cement and circuitry–to provide a sense of bottom-line rigor to the spending process.

And so, for example, if America were to succeed in building a space elevator–in its essence a 22,000-mile cable, operating like a pulley, dangling down from a stationary satellite, a concept first put forth in the late 19th century–that would be a major driver for economic growth. Japan has plans for just such a space elevator; aren’t we getting a little tired of losing high-tech economic competitions to the Japanese?

So a robust space program would not only help protect America; it would also strengthen our technological economy.

But there’s more. In the long run, space spending would be good for the environment. Here’s why:

History, as well as common sense, tells us that the overall environmental footprint of the human race rises alongside wealth. That’s why, for example, the average American produces five times as much carbon dioxide per year as the average person dwelling anywhere else on earth. Even homeless Americans, according to an MIT study–and even the most scrupulously green Americans–produce twice as much CO2, per person, as the rest of the world. Around the planet, per capita carbon dioxide emissions closely track per capita income.

A holistic understanding of homo sapiens in his environment will acknowledge the stubbornly acquisitive and accretive reality of human nature. And so a truly enlightened environmental policy will acknowledge another blunt reality: that if the carrying capacity of the earth is finite, then it makes sense, ultimately, to move some of the population of the earth elsewhere–into the infinity of space.

The ZPG and NPG advocates have their own ideas, of course, but they don’t seem to be popular in America, let alone the world. But in the no-limits infinity of space, there is plenty of room for diversity and political experimentation in the final frontier, just as there were multiple opportunities in centuries past in the New World. The main variable is developing space-traveling capacity to get up there–to the moon, Mars, and beyond–to see what’s possible.

Instead, the ultimately workable environmental plan–the ultimate vision for preserving the flora, the fauna, and the ice caps–is to move people, and their pollution, off this earth.

Indeed, space travel is surely the ultimate plan for the survival of our species, too. Eventually, through runaway WMD, or runaway pollution, or a stray asteroid, or some Murphy-esque piece of bad luck, we will learn that our dominion over this planet is fleeting. That’s when we will discover the grim true meaning of Fermi’s Paradox.

In various ways, humankind has always anticipated apocalypse. And so from Noah’s Ark to “Silent Running” to “Wall*E,” we have envisioned ways for us and all other creatures, great and small, to survive. The space program, stutteringly nascent as it might be, can be seen as a slow-groping understanding that lifeboat-style compartmentalization, on earth and in the heavens, is the key to species survival. It’s a Darwinian fitness test that we ought not to flunk.

Barack Obama, who has blazed so many trails in his life, can blaze still more, including a track to space, over the far horizon of the future. In so doing, he would be keeping faith with a figure that he in many ways resembles, John F. Kennedy. It was the 35th President who declared that not only would America go to the moon, but that we would lead the world into space.

As JFK put it so ringingly back in 1962:

The vows of this Nation can only be fulfilled if we in this Nation are first, and, therefore, we intend to be first. In short, our leadership in science and in industry, our hopes for peace and security, our obligations to ourselves as well as others, all require us to make this effort, to solve these mysteries, to solve them for the good of all men, and to become the world’s leading space-faring nation.

Today the 44th President must spend a lot of money to restore our prosperity, but he must spend it wisely. He must also keep America secure against encroaching threats, even as he must improve the environment in the face of a burgeoning global economy.

Accomplishing all these tasks is possible, but not easy. Yes, of course he will need new ideas, but he will also need familiar and proven ideas. One of the best is fostering and deploying profound new technology in pursuit of expansion and exploration.

The stars, one might hope, are aligning for just such a rendezvous with destiny.

Here I would like to suggest readers a quotation from my book “Structure of the global catastrophe” (http://www.scribd.com/doc/7529531/-) there I discuss problems of preventing catastrophes.

Refuges and bunkers

Different sort of a refuge and bunkers can increase chances of survival of the mankind in case of global catastrophe, however the situation with them is not simple. Separate independent refuges can exist for decades, but the more they are independent and long-time, the more efforts are necessary for their preparation in advance. Refuges should provide ability for the mankind to the further self-reproduction. Hence, they should contain not only enough of capable to reproduction people, but also a stock of technologies which will allow to survive and breed in territory which is planned to render habitable after an exit from the refuge. The more this territory will be polluted, the higher level of technologies is required for a reliable survival.
Very big bunker will appear capable to continue in itself development of technologies and after catastrophe. However in this case it will be vulnerable to the same risks, as all terrestrial civilisation — there can be internal terrorists, AI, nanorobots, leaks etc. If the bunker is not capable to continue itself development of technologies it, more likely, is doomed to degradation.
Further, the bunker can be or «civilizational», that is keep the majority of cultural and technological achievements of the civilisation, or “specific”, that is keep only human life. For “long” bunkers (which are prepared for long-term stay) the problem of formation and education of children and risks of degradation will rise. The bunker can or live for the account of the resources which have been saved up before catastrophe, or be engaged in own manufacture. In last case it will be simply underground civilisation on the infected planet.
The more a bunker is constructed on modern technologies and independent cultural and technically, the higher ammount of people should live there (but in the future it will be not so: the bunker on the basis of advanced nanotechnology can be even at all deserted, — only with the frozen human embryos). To provide simple reproduction by means of training to the basic human trades, thousand people are required. These people should be selected and be in the bunker before final catastrophe, and, it is desirable, on a constant basis. However it is improbable, that thousand intellectually and physically excellent people would want to sit in the bunker “just in case”. In this case they can be in the bunker in two or three changes and receive for it a salary. (Now in Russia begins experiment «Mars 500» in which 6 humans will be in completely independent — on water, to meal, air — for 500 days. Possibly, it is the best result which we now have. In the early nineties in the USA there was also a project «Biosphera-2» in which people should live two years on full self-maintenance under a dome in desert. The project has ended with partial failure as oxygen level in system began to fall because of unforeseen reproduction of microorganisms and insects.) As additional risk for bunkers it is necessary to note fact of psychology of the small groups closed in one premise widely known on the Antarctic expeditions — namely, the increase of animosities fraught with destructive actions, reducing survival rate.
The bunker can be either unique, or one of many. In the first case it is vulnerable to different catastrophes, and in the second is possible struggle between different bunkers for the resources which have remained outside. Or is possible war continuation if catastrophe has resulted from war.
The bunker, most likely, will be either underground, or in the sea, or in space. But the space bunker too can be underground of asteroids or the Moon. For the space bunker it will be more difficult to use the rests of resources on the Earth. The bunker can be completely isolated, or to allow “excursion” in the external hostile environment.
As model of the sea bunker can serve the nuclear submarine possessing high reserve, autonomy, manoeuvrability and stability to negative influences. Besides, it can easily be cooled at ocean (the problem of cooling of the underground closed bunkers is not simple), to extract from it water, oxygen and even food. Besides, already there are ready boats and technical decisions. The boat is capable to sustain shock and radiating influence. However the resource of independent swimming of modern submarines makes at the best 1 year, and in them there is no place for storage of stocks.
Modern space station ISS could support independently life of several humans within approximately year though there are problems of independent landing and adaptation. Not clearly, whether the certain dangerous agent, capable to get into all cracks on the Earth could dissipate for so short term.
There is a difference between gaso — and bio — refuges which can be on a surface, but are divided into many sections for maintenance of a mode of quarantine, and refuges which are intended as a shelter from in the slightest degree intelligent opponent (including other people who did not manage to get a place in a refuge). In case of biodanger island with rigid quarantine can be a refuge if illness is not transferred by air.
A bunker can possess different vulnerabilities. For example, in case of biological threat, is enough insignificant penetration to destroy it. Only hi-tech bunker can be the completely independent. Energy and oxygen are necessary to the bunker. The system on a nuclear reactor can give energy, but modern machines hardly can possess durability more than 30–50 years. The bunker cannot be universal — it should assume protection against the certain kinds of threats known in advance — radiating, biological etc.
The more reinforced is a bunker, the smaller number of bunkers can prepare mankind in advance, and it will be more difficult to hide such bunker. If after a certain catastrophe there was a limited number of the bunkers which site is known, the secondary nuclear war can terminate mankind through countable number of strikes in known places.
The larger is the bunker, the less amount of such bunkers is possible to construct. However any bunker is vulnerable to accidental destruction or contamination. Therefore the limited number of bunkers with certain probability of contamination unequivocally defines the maximum survival time of mankind. If bunkers are connected among themselves by trade and other material distribution, contamination between them is more probable. If bunkers are not connected, they will degrade faster. The more powerfully and more expensively is the bunker, the more difficult is to create it imperceptibly for the probable opponent and so it easeir becomes the goal for an attack. The more cheaply the bunker, the less it is durable.
Casual shelters — the people who have escaped in the underground, mines, submarines — are possible. They will suffer from absence of the central power and struggle for resources. The people, in case of exhaustion of resources in one bunker, can undertake the armed attempts to break in other next bunker. Also the people who have escaped casually (or under the threat of the comong catastrophe), can attack those who was locked in the bunker.
Bunkers will suffer from necessity of an exchange of heat, energy, water and air with an external world. The more independent is the bunker, the less time it can exist in full isolation. Bunkers being in the Earth will deeply suffer from an overheating. Any nuclear reactors and other complex machines will demand external cooling. Cooling by external water will unmask them, and it is impossible to have energy sources lost-free in the form of heat, while on depth of earth there are always high temperatures. Temperature growth, in process of deepening in the Earth, limits depth of possible bunkers. (The geothermal gradient on the average makes 30 degrees C/kilometers. It means, that bunkers on depth more than 1 kilometre are impossible — or demand huge cooling installations on a surface, as gold mines in the republic of South Africa. There can be deeper bunkers in ices of Antarctica.)
The more durable, more universal and more effective, should be a bunker, the earlier it is necessary to start to build it. But in this case it is difficult to foresee the future risks. For example, in 1930th years in Russia was constructed many anti-gase bombproof shelters which have appeared useless and vulnerable to bombardments by heavy demolition bombs.
Efficiency of the bunker which can create the civilisation, corresponds to a technological level of development of this civilisation. But it means that it possesses and corresponding means of destruction. So, especially powerful bunker is necessary. The more independently and more absolutely is the bunker (for example, equipped with AI, nanorobots and biotechnologies), the easier it can do without, eventually, people, having given rise to purely computer civilisation.
People from different bunkers will compete for that who first leaves on a surface and who, accordingly, will own it — therefore will develop the temptation for them to go out to still infected sites of the Earth.
There are possible automatic robotic bunkers: in them the frozen human embryos are stored in a certain artificial uterus and through hundreds or thousand years start to be grown up. (Technology of cryonics of embryos already exists, and works on an artificial uterus are forbidden for bioethics reasons, but basically such device is possible.) With embryos it is possible to send such installations in travel to other planets. However, if such bunkers are possible, the Earth hardly remains empty — most likely it will be populated with robots. Besides, if the human cub who has been brought up by wolves, considers itself as a wolf as whom human who has been brought up by robots will consider itself?
So, the idea about a survival in bunkers contains many reefs which reduce its utility and probability of success. It is necessary to build long-term bunkers for many years, but they can become outdated for this time as the situation will change and it is not known to what to prepare. Probably, that there is a number of powerful bunkers which have been constructed in days of cold war. A limit of modern technical possibilities the bunker of an order of a 30-year-old autonomy, however it would take long time for building — decade, and it will demand billions dollars of investments.
Independently there are information bunkers, which are intended to inform to the possible escaped descendants about our knowledge, technologies and achievements. For example, in Norway, on Spitsbergen have been created a stock of samples of seeds and grain with these purposes (Doomsday Vault). Variants with preservation of a genetic variety of people by means of the frozen sperm are possible. Digital carriers steady against long storage, for example, compact discs on which the text which can be read through a magnifier is etched are discussed and implemented by Long Now Foundation. This knowledge can be crucial for not repeating our errors.

This is cross-posted from my blog. This milestone by SpaceX is directly relevant to programs by Lifeboat such as the AsteroidShield and SpaceHabitat, and possibly also (eventually) to Space-Based Solar Power.

SpaceX Falcon 1 Rocket Launch photo

Stars My Destination
After the third try, Elon Musk, the founder of SpaceX, co-founder of Paypal, chairman of SolarCity and chairman of Tesla Motors (beat that resumé!) was interviewed by WIRED about the difficulties of making his space rockets reach orbit:

Wired.com: How do you maintain your optimism?

Musk: Do I sound optimistic?

Wired.com: Yeah, you always do.

Musk: Optimism, pessimism, fuck that; we’re going to make it happen. As God is my bloody witness, I’m hell-bent on making it work.

Falcon 1: The First Privately Developed Rocket to Orbit the Earth
Well kids, perseverance pays off. On the 4th try, the 70-foot Falcon 1 rocket reached orbit wit a 364-pound dummy payload: “The data shows we achieved a super precise orbit insertion — middle of the bullseye — and then went on to coast and restart the second stage, which was icing on the cake.” Check out the video of the highlights of the launch.

“This really means a lot,” Musk told a crowd of whooping employees. “There’s only a handful of countries on Earth that have done this. It’s usually a country thing, not a company thing. We did it.”

Musk pledged to continue getting rockets into orbit, saying the company has resolved design issues that plagued previous attempts.

Last month, SpaceX lost three government satellites and human ashes including the remains of astronaut Gordon Cooper and “Star Trek” actor James Doohan after its third rocket was lost en route to space. The company blamed a timing error for the failure that caused the rocket’s first stage to bump into the second stage after separation.

SpaceX’s maiden launch in 2006 failed because of a fuel line leak. Last year, another rocket reached about 180 miles above Earth, but its second stage prematurely shut off.

The Falcon 1, at $7.9 million each, is what you could call the budget model. In fact, $7.9 million is basically pocket changed compared to what government agencies like NASA are used to paying to contractors like Lockheed Martin & co.

SpaceX is also working on the Falcon 9 (12,500 kg to low Earth orbit, and over 4,640 kg to geosynchronous transfer orbit) and Falcon 9 Heavy (28,000 kg to low Earth orbit, and over 12,000 kg to geosynchronous transfer orbit) to help NASA reach the International Space Station, among other things. These should cost between $36.75 million and $104 million each depending on the model and mission, and the first launch is scheduled for the first quarter of 2009.

Continue reading “SpaceX Falcon 1 Rocket Reaches Orbit on 4th Try” | >

Cross posted from Nextbigfuture

Click for larger image

I had previously looked at making two large concrete or nanomaterial monolithic or geodesic domes over cities which could protect a city from nuclear bombs.

Now Alexander Bolonkin has come up with a cheaper, technological easy and more practical approach with thin film inflatable domes. It not only would provide protection form nuclear devices it could be used to place high communication devices, windmill power and a lot of other money generating uses. The film mass covered of 1 km**2 of ground area is M1 = 2×10**6 mc = 600 tons/km**2 and film cost is $60,000/km**2.
The area of big city diameter 20 km is 314 km**2. Area of semi-spherical dome is 628 km2. The cost of Dome cover is 62.8 millions $US. We can take less the overpressure (p = 0.001atm) and decrease the cover cost in 5 – 7 times. The total cost of installation is about 30–90 million $US. Not only is it only about $153 million to protect a city it is cheaper than a geosynchronous satellite for high speed communications. Alexander Bolonkin’s website

The author suggests a cheap closed AB-Dome which protects the densely populated cities from nuclear, chemical, biological weapon (bombs) delivered by warheads, strategic missiles, rockets, and various incarnations of aviation technology. The offered AB-Dome is also very useful in peacetime because it shields a city from exterior weather and creates a fine climate within the ABDome. The hemispherical AB-Dome is the inflatable, thin transparent film, located at altitude up to as much as 15 km, which converts the city into a closed-loop system. The film may be armored the stones which destroy the rockets and nuclear warhead. AB-Dome protects the city in case the World nuclear war and total poisoning the Earth’s atmosphere by radioactive fallout (gases and dust). Construction of the AB-Dome is easy; the enclosure’s film is spread upon the ground, the air pump is turned on, and the cover rises to its planned altitude and supported by a small air overpressure. The offered method is cheaper by thousand times than protection of city by current antirocket systems. The AB-Dome may be also used (height up to 15 and more kilometers) for TV, communication, telescope, long distance location, tourism, high placed windmills (energy), illumination and entertainments. The author developed theory of AB-Dome, made estimation, computation and computed a typical project.

His idea is a thin dome covering a city with that is a very transparent film 2 (Fig.1). The film has thickness 0.05 – 0.3 mm. One is located at high altitude (5 — 20 km). The film is supported at this altitude by a small additional air pressure produced by ground ventilators. That is connected to Earth’s ground by managed cables 3. The film may have a controlled transparency option. The system can have the second lower film 6 with controlled reflectivity, a further option.

The offered protection defends in the following way. The smallest space warhead has a
minimum cross-section area 1 m2 and a huge speed 3 – 5 km/s. The warhead gets a blow and overload from film (mass about 0.5 kg). This overload is 500 – 1500g and destroys the warhead (see computation below). Warhead also gets an overpowering blow from 2 −5 (every mass is 0.5 — 1 kg) of the strong stones. Relative (about warhead) kinetic energy of every stone is about 8 millions of Joules! (It is in 2–3 more than energy of 1 kg explosive!). The film destroys the high speed warhead (aircraft, bomber, wing missile) especially if the film will be armored by stone.

Our dome cover (film) has 2 layers: top transparant layer 2, located at a maximum altitude (up 5 −20 km), and lower transparant layer 4 having control reflectivity, located at altitude of 1–3 km (option). Upper transparant cover has thickness about 0.05 – 0.3 mm and supports the protection strong stones (rebbles) 8. The stones have a mass 0.2 – 1 kg and locate the step about 0.5 m.

If we want to control temperature in city, the top film must have some layers: transparant dielectric layer, conducting layer (about 1 — 3 microns), liquid crystal layer (about 10 — 100 microns), conducting layer (for example, SnO2), and transparant dielectric layer. Common thickness is 0.05 — 0.5 mm. Control voltage is 5 — 10 V. This film may be produced by industry relatively cheaply.

If some level of light control is needed materials can be incorporated to control transparency. Also, some transparent solar cells can be used to gather wide area solar power.


As you see the 10 kt bomb exploded at altitude 10 km decreases the air blast effect about in 1000
times and thermal radiation effect without the second cover film in 500 times, with the second reflected film about 5000 times. The hydrogen 100kt bomb exploded at altitude 10 km decreases the air blast effect about in 10 times and thermal radiation effect without the second cover film in 20 times, with the second reflected film about 200 times. Only power 1000kt thermonuclear (hydrogen) bomb can damage city. But this damage will be in 10 times less from air blast and in 10 times less from thermal radiation. If the film located at altitude 15 km, the
damage will be in 85 times less from the air blast and in 65 times less from the thermal radiation.
For protection from super thermonuclear (hydrogen) bomb we need in higher dome altitudes (20−30 km and more). We can cover by AB-Dome the important large region and full country.

Because the Dome is light weight it could be to stay in place even with very large holes. Multiple shells of domes could still be made for more protection.

Better climate inside a dome can make for more productive farming.

AB-Dome is cheaper in hundreds times then current anti-rocket systems.
2. AB-Dome does not need in high technology and can build by poor country.
3. It is easy for building.
4. Dome is used in peacetime; it creates the fine climate (weather) into Dome.
5. AB-Dome protects from nuclear, chemical, biological weapon.
6. Dome produces the autonomous existence of the city population after total World nuclear war
and total confinement (infection) all planet and its atmosphere.
7. Dome may be used for high region TV, for communication, for long distance locator, for
astronomy (telescope).
8. Dome may be used for high altitude tourism.
9. Dome may be used for the high altitude windmills (getting of cheap renewable wind energy).
10. Dome may be used for a night illumination and entertainment