Toggle light / dark theme

Researchers may have demonstrated a novel way to protect us from some of the world’s deadliest viruses. By genetically engineering immune cells to make more effective antibodies, they have defended mice from a potentially lethal lung virus. The same strategy could work in humans against diseases for which there are no vaccines.

“It’s a huge breakthrough,” says immunologist James Voss of the Scripps Research Institute in San Diego, California, who wasn’t connected to the study.

Vaccines typically contain a disabled microbial invader or shards of its molecules. They stimulate immune cells known as B cells to crank out antibodies that target the pathogen. Not everyone who receives a vaccine gains protection, however. Some patients’ antibodies aren’t up to snuff, for instance. And researchers haven’t been able to develop vaccines against some microbes, such as HIV and the respiratory syncytial virus (RSV), which causes lung infections mainly in children and people with impaired immune systems.

Read more

https://www.youtube.com/watch?v=9z2bjVhDpBg&t=1s

For the first time, scientists have created life with genetic code that was developed from scratch.

A University of Cambridge team created living, reproducing E. coli bacteria with DNA coded entirely by humans, according to The New York Times. The new bacteria look a little wonky, but they behave more or less the same as natural E. coli. Learning to rebuild genomes from scratch could teach scientists how DNA originally came to be — and how we can manipulate it to create new life.

Read more

Your mother was right: Broccoli is good for you. Long associated with decreased risk of cancer, broccoli and other cruciferous vegetables—the family of plants that also includes cauliflower, cabbage, collard greens, Brussels sprouts and kale—contain a molecule that inactivates a gene known to play a role in a variety of common human cancers. In a new paper published today in Science, researchers, led by Pier Paolo Pandolfi, MD, Ph.D., Director of the Cancer Center and Cancer Research Institute at Beth Israel Deaconess Medical Center, demonstrate that targeting the gene, known as WWP1, with the ingredient found in broccoli suppressed tumor growth in cancer-prone lab animals.

“We found a new important player that drives a pathway critical to the development of , an enzyme that can be inhibited with a natural compound found in broccoli and other ,” said Pandolfi. “This pathway emerges not only as a regulator for control, but also as an Achilles’ heel we can target with therapeutic options.”

A well-known and potent suppressive gene, PTEN is one of the most frequently mutated, deleted, down-regulated or silenced in human cancers. Certain inherited PTEN mutations can cause syndromes characterized by cancer susceptibility and developmental defects. But because complete loss of the gene triggers an irreversible and potent failsafe mechanism that halts proliferation of cancer cells, both copies of the gene (humans have two copies of each gene; one from each parent) are rarely affected. Instead, exhibit lower levels of PTEN, raising the question whether restoring PTEN activity to normal levels in the cancer setting can unleash the gene’s tumor suppressive activity.

Read more

Alexey Kochetov, director of the Siberian Branch of the Russian Academy of Sciences (RAS) Institute of Cytology and Genetics in Novosibirsk, welcomed the research programme, noting that genetics in Russia has been “chronically underfinanced” for decades. Funding for science plummeted in the 1990s following the break-up of the Soviet Union, and Russia still lags behind other major powers: in 2017, it spent 1.11% of its gross domestic product on research, compared with 2.13% in China and 2.79% in the United States.


A US$1.7-billion programme aims to develop 30 gene-edited plant and animal varieties in the next decade. A US$1.7-billion programme aims to develop 30 gene-edited plant and animal varieties in the next decade.

Read more

A pair of collaborative studies led by Fen-Biao Gao, Ph.D., have identified two potential drug targets for the diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The studies, which appear in Nature Neuroscience and PNAS, provide a new layer of detail about how hexanucleotide repeat expansions in the C9ORF72 gene, the most common genetic mutation responsible for both ALS and FTD, causes neuron cell death. The Nature Neuroscience study also describes a new mouse model that more closely mimics the gradual build-up of toxins in patients with the diseases.

“Understanding how these mutations lead to motor neuron damage is important to the development of new treatment approaches,” said Dr. Gao, the Governor Paul Cellucci Chair in Neuroscience Research and professor of neurology. “We know that this mutation can cause these diseases. These studies show that both and DNA repair pathways are disrupted when the mutated gene is present in cells. That makes them potentially druggable targets.”

In ALS, a progressive, neurodegenerative disorder affecting the motor neurons in the central nervous system, the C9ORF72 gene accounts for 40 percent of inherited forms of the disease and 6 percent of sporadic cases. As motor neurons die, the brain’s ability to send signals to the body’s muscles is compromised. This leads to loss of voluntary muscle movement, paralysis and eventually death from respiratory failure.

Read more

A new way to cleanly separate out cancer cells from a blood sample enables comprehensive genetic profiling of the cancer cells, which could help doctors target tumors and monitor treatments more effectively.

It is a dramatic improvement over current approaches because it also encompasses the variation among cells within a single patient.

“This could be a whole different ball game,” said Max Wicha, the Madeline and Sidney Forbes Professor of Oncology at the University of Michigan and senior physician on the study in Nature Communications.

Read more

https://www.youtube.com/watch?v=pZdGAVtUlWk