Toggle light / dark theme

By Kim Thurler, Tufts University

(MEDFORD/SOMERVILLE, Mass.) — Changing the natural electrical signaling that exists in cells outside the nervous system can improve resistance to life-threatening bacterial infections, according to new research from Tufts University biologists. The researchers found that administering drugs, including those already used in humans for other purposes, to make the cell interior more negatively charged strengthens tadpoles’ innate immune response to E. coli infection and injury. This reveals a novel aspect of the immune system – regulation by non-neural bioelectricity – and suggests a new approach for clinical applications in human medicine. The study is published online May 26, 2017, in npj Regenerative Medicine, a Nature Research journal.

“All cells, not just nerve cells, naturally generate and receive electrical signals. Being able to regulate such non-neural bioelectricity with the many ion channel and neurotransmitter drugs that are already human-approved gives us an amazing new toolkit to augment the immune system’s ability to resist infections,” said the paper’s corresponding author Michael Levin, Ph.D., Vannevar Bush Professor of Biology and Director of the Allen Discovery Center at Tufts and the Tufts Center for Regenerative and Developmental Biology in the School of Arts and Sciences. Levin is also an Associate Faculty member of the Wyss Institute of Biologically Inspired Engineering at Harvard University.

Read more

As well as beating us at board games, driving cars, and spotting cancer, artificial intelligence is now generating brand new sounds that have never been heard before, thanks to some advanced maths combined with samples from real instruments.

Before long, you might hear some of these fresh sounds pumping out of your radio, as the researchers responsible say they’re hoping to give musicians an almost limitless new range of computer-generated instruments to work with.

The new system is called NSynth, and it’s been developed by an engineering team called Google Magenta, a small part of Google’s larger push into artificial intelligence.

Read more

China is also planning to use the initiative to flex its scientific and engineering muscles, officials made clear at a 2-day Belt and Road Forum for International Cooperation that ended yesterday in Beijing. “Innovation is an important force powering development,” Xi said in a speech to the opening session of the forum. And so the initiative will include technical cooperation in fields including artificial intelligence, nanotechnology, quantum computing, and smart cities. He also mentioned the need to pursue economic growth that is in line with sustainable development goals, and that rests on environmentally friendly approaches.


Investment also planned in artificial intelligence, nanotechnology, and other fields.

Read more

The Buck institute is in the spotlight today.


Located in Novato, California, not too far from Mount Burdell Preserve and Olompali State Historic Park, is one of the world’s leading research centres for ageing and age-related diseases—the Buck Institute for Research on Aging.

Opened in 1999 thanks to the substantial bequest of American philanthropist Beryl Hamilton Buck, the Buck Institute set to fulfill her wishes that her patrimony be spent to “extend help towards the problems of the aged, not only the indigent but those whose resources cannot begin to provide adequate care.” Over the years, the Institute has certainly honoured its commitment: The Buck can boast some of the most eminent experts on ageing among its research staff, and a number of laboratories that push forward our understanding of age-related pathologies every day—such as the Campisi Lab and the Kennedy Lab, just to name a few.

The Buck’s approach to investigating ageing is a multifaceted one. The institute rightfully acknowledges the necessity to bring together experts from disparate fields of science—from physics to engineering, from mathematics to anthropology—in order to properly understand the complex networks of biochemical processes underlying ageing and ultimately leading to pathology. Biochemistry, molecular endocrinology, proteomics, genomic stability, and cell biology are only some of the areas of investigation of the Buck, and the medical conditions researched by their teams range from Huntington’s disease to ischemia, to Parkinson’s, to cancer and Alzheimer’s. The three main questions the Buck set to answer are why do ageing tissues lose their regeneration capacity, why do stem cells fail to function with ageing, and how do tissues change during ageing so that they no longer support normal regenerative processes.

Read more

Future of farming? Driverless tractors and drones attempt to grow crops without humans setting foot on the land in a world first…


Drones are also being used to monitor the crops so agronomists don’t have to enter the field to carry out their observations.

The team from the Harper Adams University in Shropshire believe their research will revolutionise farming and free up the time of farmers.

Johnathan Gill, Kit Franklin and Martin Abell are using small-scale machinery that is already available on the market including a 38bhp Iseki TLE 3400 compact tractor and adapting these in the university’s engineering labs.

Read more

Each year, the world’s greatest innovators and inventors gather for the Edison Awards to celebrate “game-changing” developments in technology, engineering, marketing, and design. Here are just some of the innovations that are already transforming our world.

Each year, innovators from across the globe trade in their lab coats and laptops for ties and gowns to honor the nominees at the Edison Awards ceremony in New York City. Over the past three decades, the awards have highlighted the most innovative products and people in science. Last year’s honorees featured Alan Stern, Principal Investigator of NASA’s New Horizons mission to Pluto.

Read more

Who says that cartoons are for kids?

Artificial intelligence (AI) kicks off the Microsoft Story Labs animated “Explanimators” series about big, important, cutting-edge areas of technology that remain mysterious (if not just plain confusing) to people who don’t have an engineering or computer science degree.

While artificial intelligence is increasingly all around us, helping people do more, save time and work smarter – let’s be honest – it’s tricky to wrap your head around how it works and where it’s headed.

Read more

There is updated technical information on the Lockheed compact fusion reactor project. It was originally believed that the compact reactor would fit on a large truck. It looked like it might weigh 20 tons. After more engineering and scientific research, the new design requires about 2000 ton reactor that is 7 meters in diameter and 18 meters long. This would be about one third the length of a Dolphin diesel submarine and it would be slightly wider and taller. It would be similar in size to a A5W submarine nuclear fission reactor. We would not know for sure because the A5W size is classified but based on the size and likely configuration of a nuclear submarine this size estimate is likely.

They have performed simulations. In simulations, plasma confinement is achieved in magnetic wells with self – produced sharp magnetic field boundaries. • Design closes for 200 MW th reactor, 18 meters long by 7 meters diameter device assuming hybrid gyro – radii sheath and cusp widths and good coil support magnetic shielding. • Neutral beam heats plasma to ignited state. • The dominant losses are ion losses through the ring cusps into stalks and axially through the mirror confined sheath. • Good global curvature gives interchange stability.

Lockheed believes they can get better confinement at the cusps than the EMC2 polywell reactor.

Read more

(credit: Facebook)

Regina Dugan, PhD, Facebook VP of Engineering, Building8, revealed today (April 19, 2017) at Facebook F8 conference 2017 a plan to develop a non-invasive brain-computer interface that will let you type at 100 wpm — by decoding neural activity devoted to speech.

Dugan previously headed Google’s Advanced Technology and Projects Group, and before that, was Director of the Defense Advanced Research Projects Agency (DARPA).

Read more