Toggle light / dark theme

Researchers from Drexel University’s College of Engineering invented a material called MXene, that they say perform as well as those currently used in mobile devices.

MXene titanium carbide can be dissolved in water to create an ink or paint and the exceptional conductivity of the material enables it to transmit and direct radio waves, even when it’s applied in a very thin coating.

It would allow antennas to easily applied to wide variety of objects and surfaces without adding additional weight or circuitry or requiring a certain level of rigidity.

Read more

In a world increasingly driven by industries that rely on advanced technical learning and innovation, fluency in STEM fields (science, technology, engineering and math) becomes more vital every day. Yet our education system isn’t keeping up. Five years ago, a Business-Higher Education Forum study found that 80% of high school students either lacked interest or proficiency in STEM subjects. Meanwhile, a college and career readiness organization known as ACT reported last year that the number of students pursuing STEM careers is growing at less than 1% annually.

The Amgen Foundation is doing something about it. As the principal philanthropic arm of Amgen, the largest independent biotechnology company, the Amgen Foundation has been committed to inspiring the next generation of scientists and innovators by making immersive science education a focus of its social investments for almost 30 years. While Amgen has reached millions of patients around the world with biotechnology medicines to combat serious illnesses, such as cardiovascular disease, cancer and migraines, the Amgen Foundation has reached more than 4 million students globally—and it is poised to launch a new program called LabXchange with the potential to reach millions more.

“As a scientist, it’s clear to me that the most effective way to learn science is by doing it,” says David Reese, executive vice president of Research and Development at Amgen and member of the Amgen Foundation board of directors. “It’s time to transform the science learning experience. We need to move from information acquisition to application and exploration, from students as passive listeners to active participants in the learning process, from teachers as knowledge transmitters to facilitators and coaches.”

Read more

In the new era of generative design in architecture, engineering, and construction, designers and builders will use computers not just to describe buildings, but cocreate them.

Before GPS, if you got lost while driving your car, you had to swallow your pride and stop to ask for directions. With the help of the innate intelligence of Google Maps or Waze, you can let a machine compute the best route so you can concentrate on what’s really important—driving.

In the case of architects, engineers, and contractors, their computers will help navigate the design and construction process, so they can focus on making successful projects and great buildings as a result.

Read more

Careful sample preparation, electron tomography and quantitative analysis of 3D models provides unique insights into the inner structure of reverse osmosis membranes widely used for salt water desalination wastewater recycling and home use, according to a team of chemical engineers.

These reverse osmosis membranes are layers of material with an active aromatic polyamide layer that allows molecules through, but screens out 99 to 99.9 percent of the salt.

“As water stresses continue to grow, better membrane filtration are needed to enhance water recovery, prevent fouling, and extend filtration module lifetimes while maintaining reasonable costs to ensure accessibility throughout the world,” said Enrique Gomez, professor of chemical engineering, Penn State. “Knowing what the material looks like on the inside, and understanding how this microstructure affects water transport properties, is crucial to designing next-generation membranes with longer operational lifetimes that can function under a diverse set of conditions.”

Read more

90% of natural disasters are flood related. Flooding will occur and people will build in areas that can and will flood so how can we change the outcomes in the future? Why not have floating homes that are anchored to their site but rise and lower with the flood with zero damage? I am about to start a new company that can manufacture those homes. If you want to know more contact me directly.


Engineers at Ruhr-Universität Bochum have developed a new statistical model that predicts how likely extreme flood events are in Germany. In contrast to earlier models, they distinguish between several types of floods with different causes, such as heavy rain, snow or spatially extended rain events with long durations. The model improves the assessment of flood risks and to plan appropriate protective measures. The team led by Professor Andreas Schumann from the Institute of Hydrology, Water Resources Management and Environmental Engineering reports on its work in the Bochum science magazine Rubin.

In their model, the hydrologists distinguish between three main types of flood, which stem from different causes: heavy , which lasts one or two days; prolonged rain over four to five days; and snow-related flooding.

In general, annual maximum values are analysed statistically without distinguishing between the different types of flooding. However, this is precisely what is required in order to estimate the likelihood of flooding under consideration of the regional conditions. Brief, localised heavy rain can, for instance, cause rivers to break their banks if their catchment is small, but for large river basins events with long durations are more relevant, which result in an overlay of flood waves from tributaries.

Read more

SpaceX’s CEO shrugs off 20 years of NASA research.


SORRY, ELON. To be ready for human occupants, Elon Musk has long called Mars a “fixer-upper of a planet.” But according to a new NASA-sponsored study, a better description might be a “tear-down.” The scientists behind that project say it’s simply not possible to terraform Mars — that is, change its environment so that humans can live there without life support systems — using today’s technology.

BUILDING AN ATMOSPHERE. Mars has a super thin atmosphere; a human unprotected on the surface of Mars would quickly die, mostly because there’s not enough atmospheric pressure to prevent all your organs from rupturing out of your body (if you survived a little longer, you could also suffocate from lack of oxygen, freeze from low temperatures, or get fried from too much ultraviolet radiation).

This study, published Monday in the journal Nature Astronomy, considers how difficult it would be to increase the atmospheric pressure on the Red Planet enough so that humans can walk on Mars’s surface without a pressurized suit and, ideally, without a breathing apparatus.

Read more

Researchers are paving the way to total reliance on renewable energy as they study both large- and small-scale ways to replace fossil fuels. One promising avenue is converting simple chemicals into valuable ones using renewable electricity, including processes such as carbon dioxide reduction or water splitting. But to scale these processes up for widespread use, we need to discover new electrocatalysts—substances that increase the rate of an electrochemical reaction that occurs on an electrode surface. To do so, researchers at Carnegie Mellon University are looking to new methods to accelerate the discovery process: machine learning.

Zack Ulissi, an assistant professor of chemical engineering (ChemE), and his group are using machine learning to guide electrocatalyst discovery. By hand, researchers spend hours doing routine calculations on materials that may not end up working. Ulissi’s team has created a system that automates these routine calculations, explores a large search space, and suggests new alloys that have promising properties for electrocatalysis.

“This allows us to spend our time asking science questions, like, ‘How do you predict the properties of something,’ ‘What is the thermodynamic model,’ ‘What is the model of the system,’ or ‘How do you represent the system?’” said Ulissi.

Read more

Quantum particles can be difficult to characterize, and almost impossible to control if they strongly interact with each other—until now.

An international team of researchers led by Princeton physicist Zahid Hasan has discovered a state of matter that can be “tuned” at will—and it’s 10 times more tuneable than existing theories can explain. This level of manipulability opens enormous possibilities for next-generation nanotechnologies and quantum computing.

“We found a new control knob for the quantum topological world,” said Hasan, the Eugene Higgins Professor of Physics. “We expect this is tip of the iceberg. There will be a new subfield of materials or physics grown out of this. … This would be a fantastic playground for nanoscale engineering.”

Read more

The German start-up company ELiSE creates the DNA of a technical part. Based on the DNA, automated design processes are used to find the best solution which considers all predefined constraints and which is produced by additive manufacturing. Meet ELiSE at ESA’s Start-ups Zone powered by ESA space solutions at IAC 2018.

Read more

Many congrats to @Enrico Dini 🔝🍾🎉🎉🎉🥇Enrico reached that outcome after an eclectic professional path: a graduate of Civil Engineering at Pisa University, Enrico has spent his entire career in automation and robotics. In 2004, Enrico envisioned the endless potential of the use of additive manufacturing techniques at architectural scale as a means to affordably reach architectural beauty. Since then, Enrico has dedicated his entire professional career in the pursuit of his passion to 3D print beautiful architecture.


At the Digital Concrete 2018 Conference, several awards will be presented. Award categories include: Best Proceedings Paper, Best Presentation, and Best Poster. Each category will have an award encompassing all entries, and one for students only. The awards will be given at the conference closing on Wednesday, 12 September, before lunch.

In addition, two Pioneering Achievement Awards will be given to two pioneers in the field of digital fabrication with concrete, Prof. Behrokh Khoshnevis and Enrico Dini. Information for the two awardees is seen below.

Read more