Toggle light / dark theme

Researchers have developed a new treatment method capable of detecting Lyme disease in just 15 minutes.

Caused by Borrelia burgdorferi and transmitted by the bite of infected Ixodes ticks, Lyme disease if left untreated can cause serious neurologic, cardiac, and/or rheumatologic complications.

“Our findings are the first to demonstrate that Lyme disease diagnosis can be carried out in a microfluidic format that can provide rapid quantitative results,” said Sam Sia, professor of biomedical engineering at Columbia Engineering.

Circa 2018


After first spotting this crazy looking motorcycle-styled hoverbike in early 2017, we were skeptical the contraption would ever move beyond just an odd engineering curiosity. However, Russian company Hoversurf has just revealed its hoverbikes are now ready for production and preorders are open, with delivery scheduled for sometime in 2019.

Ever since the Scorpion hoverbike was revealed we seriously questioned its safety, with such a crazy close proximity between spinning blades and fleshy legs it seemed like a device only really suitable for “aspiring amputees”. Nevertheless, Hoversurf has rapidly moved from ambitious prototype to commercial aircraft, first revealing a deal to sell the aircraft to Dubai Police, and then more recently passing the US Federal Aviation Administration requirements to be classified as a legal ultralight vehicle.

The plan to classify the hoverbike as an ultralight vehicle resulted in some minor design tweaks to fulfill the legal requirements of the classification, but this final commercial iteration is still, at its core, the same crazy quadcopter hoverbike.

Researchers have found a way to marry human creativity and artificial intelligence (AI) creativity to dramatically boost the performance of deep learning.

A team led by Alexander Wong, a Canada Research Chair in the area of AI and a professor of systems design engineering at the University of Waterloo, developed a new type of compact family of neural networks that could run on smartphones, tablets, and other embedded and mobile devices.

https://www.youtube.com/watch?v=b07Pci_-eVY&t=1s

Using a new time-based method to control light from an ultrafast laser, researchers have developed a nanoscale 3D printing technique that can fabricate tiny structures 1000 times faster than conventional two-photon lithography (TPL) techniques, without sacrificing resolution.

Despite the high throughput, the new parallelized technique—known as femtosecond projection TPL (FP-TPL)—produces depth resolution of 175 nanometers, which is better than established methods and can fabricate structures with 90-degree overhangs that can’t currently be made. The technique could lead to manufacturing-scale production of bioscaffolds, flexible electronics, electrochemical interfaces, micro-optics, mechanical and optical metamaterials, and other functional micro- and nanostructures.

The work, reported Oct. 3 in the journal Science, was done by researchers from Lawrence Livermore National Laboratory (LLNL) and The Chinese University of Hong Kong. Sourabh Saha, the paper’s lead and corresponding author, is now an assistant professor in the George W. Woodruff School of Mechanical Engineering at the Georgia Institute of Technology.

The Netherlands’ Nuclear Research and Consultancy Group (NRG) has completed a major milestone irradiation test of molten nuclear fuel salts in its High Flux Reactor at Petten 37 mi (60 km) north of Amsterdam. The first test of its kind since the ones carried out at Oak Ridge, Tennessee in the 1960s, its purpose is to learn more about the safe operation of a future Molten Salt Reactor (MSR).

First developed in the United States in the 1950s and ’60s, MSRs differ from conventional light-water nuclear reactors in a number of significant ways that make them potentially a safer and more efficient alternative. This is because, though a light-water reactor and an MSR work on the same principle of nuclear fission, they have a fundamentally different engineering design.

The wheels are in motion to send the first humans to Mars. For many, the first image that calls to mind may be of a spaceship touching down in a vast, red desert. But arriving on Mars is only half the picture. People also need to live there, something that can be difficult to imagine because there are so many unknowns. Martian habitation presents one of the greatest scientific challenges of the 21st century. And it is a challenge synthetic biology will be integral in solving.

One of the most exciting ventures tackling this problem is CUBES, the Center for the Utilization of Biological Engineering in Space. SynBioBeta recently spoke with Adam Arkin, the director of CUBES and professor of bioengineering at UC Berkeley. Arkin, who will also speak at SynBioBeta 2019, described the goals of the CUBES project and how their work could enable human life on Mars.

CUBES is a five-year NASA Science Technology Research Institute. Veteran researchers, postdocs, and undergraduates have come together across six universities to develop biomanufacturing systems for Mars missions. But, explains Arkin, “since there isn’t a specified reference mission architecture for a real mission to Mars, we don’t know precisely what our constraints are.” Over the next five years, CUBES will build increasingly realistic models of what it will take to make integrated bio-systems feasible in space.

Other approaches to space involve moving some or all the engineering activities out of government into the private sector, in the hopes that the private sector will be able to produce otherwise unavailable efficiencies. This sounds good in practice, but we must recognize that shifting some management responsibilities does not alleviate the government responsibility to regulate and look out after the public good.

But imprudent regulation impairs private sector efforts, simply because they may have a harder time getting relief from government rules than, let’s say, the DoD might. Unnecessarily stringent rules, requirements, and regulations discourage success. The precautionary principle has its appeal, but when the underlying activity itself is relatively new and uncertain, precautionary restrictions quickly turn into outright prohibition. Any arbitrary prohibition limits the diversity of our national spaceflight portfolio.

It may seem that this or that actor might benefit from favoritism, permissive oversight, or other unfair advantages. But while everybody trying to do something new in space benefits from distinct benefits and advantages, they also face unique obstacles and difficulties.

A professor at the University of Chicago believes he is on his way to creating a wearable for market that will manipulate your muscles with electrical impulses to cause you to move involuntarily so you can perform a physical task you otherwise didn’t know how to do, like playing a musical instrument or operating machinery.

Dr. Pedro Lopes, who heads the Human Computer Integration lab at the university, is all about integrating humans and computers, closing the gap between human and machine. His team, which focuses on engineering the next generation of wearable and haptic devices, is exploring the endless possibilities if wearables could intentionally share parts of our body for input and output, allowing computers to be more directly interwoven in our bodily senses and actuators.

Lopes’ vision: a wearable EMS device that would look like a sleeve and be able to send electrical impulses in the right timing and in the right fashion to make a user’s muscles move involuntarily to perform a physical task. EMS stands for electrical muscle stimulation.

When the structure of DNA was elucidated in 1953, an unimaginable world of possibilities was opened. But we couldn’t even begin to dream about how we would go about using such powerful knowledge. Thirty years later, PCR — the process to replicate DNA in the lab — was developed, and innovation exploded. In 2001 — nearly twenty years ago — the first full human genome was sequenced and published.

The information we’ve uncovered through DNA is enabling us to explore and develop solutions for a variety of problems, from how to mimic human disease in animal models to finding new treatments and cures for devastating diseases such as cancer and Alzheimer’s.

Our ability to engineer biology is making DNA even more powerful. We are building upon the blueprint that was already there, strengthening it, giving it new and improved functions, and leveraging its characteristics to do useful things for us. Perfect examples include engineering the genomes of T cells to turn them into highly specific cancer fighters or modifying bacteria to produce useful products like insulin, food ingredients, or bioplastics. We are even beginning to use DNA to store information, perhaps one day replacing the physical hard drive.