Toggle light / dark theme

Traditionally, India’s best and brightest tech talent has emigrated to the United States for lucrative job opportunities. But now they’re putting their entrepreneurial spirit and engineering skills to use at home.

VICE correspondent Krishna Andavolu heads to the city of Bangalore to explore what may indeed be the world’s next Silicon Valley.

Check out VICE News for more: http://vicenews.com
Follow VICE News here:
Facebook: https://www.facebook.com/vicenews
Twitter: https://twitter.com/vicenews
Tumblr: http://vicenews.tumblr.com/
Instagram: http://instagram.com/vicenews
More videos from the VICE network: https://www.fb.com/vicevideo
#VICEonHBO

An international group of researchers has made graphene more affordably and with a lower environmental impact than current chemical methods by using bacteria.

Graphene is a very strong and conductive material that could revolutionize electronics and engineering. However, producing graphene in large quantities requires lots of energy and involves toxic chemicals, such as hydrazine, which damages the nervous system.

Researchers from the Delft University of Technology in the Netherlands and the University of Rochester in the US have worked to overcome these problems by using bacteria to produce graphene. Their work has been published in the journal ChemOpen.

If you’re interested in mind uploading, then I have an excellent article to recommend. This wide-ranging article is focused on neuromorphic computing and has sections on memristors. Here is a key excerpt:

“…Perhaps the most exciting emerging AI hardware architectures are the analog crossbar approaches since they achieve parallelism, in-memory computing, and analog computing, as described previously. Among most of the AI hardware chips produced in roughly the last 15 years, an analog memristor crossbar-based chip is yet to hit the market, which we believe will be the next wave of technology to follow. Of course, incorporating all the primitives of neuromorphic computing will likely require hardware solutions even beyond analog memristor crossbars…”

Here’s a web link to the research paper:


Computers have undergone tremendous improvements in performance over the last 60 years, but those improvements have significantly slowed down over the last decade, owing to fundamental limits in the underlying computing primitives. However, the generation of data and demand for computing are increasing exponentially with time. Thus, there is a critical need to invent new computing primitives, both hardware and algorithms, to keep up with the computing demands. The brain is a natural computer that outperforms our best computers in solving certain problems, such as instantly identifying faces or understanding natural language. This realization has led to a flurry of research into neuromorphic or brain-inspired computing that has shown promise for enhanced computing capabilities. This review points to the important primitives of a brain-inspired computer that could drive another decade-long wave of computer engineering.

A hungry nanoparticle that enters your body and eats away at your insides sounds like a nightmare straight out of a Michael Crichton novel. In fact, it could be a future defense against heart attacks, strokes, and potentially other fatal diseases — as strange as that might initially sound.

Developed by scientists at Michigan State and Stanford universities, the innovative new “Trojan Horse” nanoparticle works by munching away portions of the plaques responsible for heart attacks. In a proof-of-concept demonstration, the researchers recently showed that their specially developed nanoparticle is able to accurately home in on atherosclerotic plaque, which is responsible for atherosclerosis, one of the leading causes of death in the United States.

“What the nanotherapy does is it enters inflammatory monocytes [a type of white blood cell] in the blood, and carries them into the plaque — hence the ‘Trojan Horse’ label — where they become macrophages, and stimulatesthose and other macrophages in plaque to devour cellular debris,” Bryan Smith, associate professor of biomedical engineering at MSU, told Digital Trends. “This ‘taking out the trash’ attribute stabilizes the plaque with minimal side effects.”

Britain’s Tom Bagnall has always enjoyed making new things and has always been passionate about engineering.

Which explains why he was keen to be the person to set the Fastest speed in a jet-propelled go-kart after joining a jet-car team as one of the pit crew.

Tom, from Cheadle, Staffordshire, managed a staggering speed of 112.29 mph (180.72 km/h) on CBBC’s Officially Amazing, in York, UK, on 5 September 2017 and now his speed machine has made it into Guinness World Records 2019 as one of the book’s “maker” spreads.

Graphene is a paradox. It is the thinnest material known to science, yet also one of the strongest. Now, research from University of Toronto Engineering shows that graphene is also highly resistant to fatigue—able to withstand more than a billion cycles of high stress before it breaks.

New cancer immunotherapies involve extracting a patient’s T cells and genetically engineering them so they will recognize and attack tumors. This technique is a true medical breakthrough, with an increasing number of leukemia and lymphoma patients experiencing complete remissions since CAR T therapy was FDA approved in 2017.

This type of therapy is not without challenges, however. Engineering a patient’s T is laborious and expensive. And when successful, the alterations to the immune system immediately make patients very sick for a short period of time, with symptoms including fever, nausea and neurological effects.

Now, University of Pennsylvania researchers have demonstrated a new engineering technique that, because it is less toxic to the T cells, could enable a different mechanism for altering the way they recognize cancer.

Circa 2018


It may look like just another giant smokestack, but a 200-foot tower in the central Chinese city of Xi’an was built to pull deadly pollutants from the air rather than add more. And preliminary research shows the tower — which some are calling the world’s largest air purifier — has cut air pollution significantly across a broad swath of the surrounding area.

Given those findings, the researchers behind the project say they hope to build an even taller air-purifying tower in Xi’an, and possibly in other cities around China.

“I like to tell my students that we don’t need to be medical doctors to save lives,” said Dr. David Pui, a professor of mechanical engineering at the University of Minnesota and one of the researchers. “If we can just reduce the air pollution in major metropolitan areas by 20 percent, for example, we can save tens of thousands of lives each year.”

Michigan State University and Stanford University scientists have invented a nanoparticle that eats away—from the inside out—portions of plaques that cause heart attacks.

Bryan Smith, associate professor of biomedical engineering at MSU, and a team of scientists created a “Trojan Horse” nanoparticle that can be directed to eat debris, reducing and stabilizing plaque. The discovery could be a potential treatment for atherosclerosis, a leading cause of death in the United States.

The results, published in the current issue of Nature Nanotechnology, showcases the nanoparticle that homes in on due to its high selectivity to a particular immune cell type—monocytes and macrophages. Once inside the macrophages in those plaques, it delivers a drug agent that stimulates the cell to engulf and eat cellular debris. Basically, it removes the diseased/dead in the plaque core. By reinvigorating the macrophages, size is reduced and stabilized.

Taiwan has been the world’s hardware hub for decades, so the shift toward AI makes the most of the existing inexpensive engineering talent. A refocus on AI, however, reduces reliance on hardware, which can easily be made somewhere else, such as China, at lower costs. Multinational tech companies have already shown interest in tapping Taiwan’s talent in software, including AI.

To move things along further, the government of Hsinchu County, near Taipei, will open a 126,000-square-meter (about 1.3 million square feet) AI business park near one of Taiwan’s major all-purpose high-tech zones and two top universities.

“[The park] will not just help [promote] industry-academia cooperation, but also let AI-oriented startups and companies have a demo space to verify AI product services,” says Shirley Tsai, a research manager with IDC Taiwan’s enterprise solution group. “It will be helpful as well to attract the companies who are interested in the AI field and then accelerating the AI ecosystem.”