Toggle light / dark theme

At first glance, one would consider the proposition of a base on Mercury, our Sun’s closest satellite, as ludicrous. With daytime temperatures reaching up to 700K — hot enough to melt lead — while the dark side of the planet experiences a temperature average of 110K — far colder than anywhere on Earth, combined with the lack of any substantial atmosphere, and being deep in the Sun’s gravitational potential well, conditions seem unfavorable.

First impressions can be misleading however, as it is well known that polar areas do not experience the extreme daily variation in temperature, with temperatures in a more habitable range (< 273 K (0 °C)) and it has been anticipated there may even be deposits of ice inside craters. http://nssdc.gsfc.nasa.gov/planetary/ice/ice_mercury.html

And is not just habitable temperature and ice-water in its polar regions that make Mercury an interesting candidate for an industrial base. There are a number of other factors making it more favourable than either a Looner or Martian base:

Mercury is the second densest planet in our solar system — being just slightly less dense than our Earth — and is rich in valuable resources, the highest concentrations of many valuable minerals of any surface in the Solar System, in highly concentrated ores. Also, being the closest planet to the Sun, Mercury has vast amounts of solar power available, and there are predictions that Mercury’s soil may contain large amounts of helium-3, which could become an important source of clean nuclear fusion energy on Earth and a driver for the future economy of the Solar System. Therefore it is a strong candidate for an industrial base.

Ticking other boxes — the gravity on the surface of Mercury is more than twice that of the Moon and very close to the surface gravity on Mars. Since there is evidence of human health problems associated with extended exposure to low gravity, from this point of view, Mercury might be more attractive for long-term human habitation than the Moon. Also, Mercury has the additional advantage of a magnetic field protecting it from cosmic rays and solar storms.

In fact, this idea is not a new one. Back in the 1980s, C.R. Pellegrino proposed covering Mercury with solar power farms, and transferring some of the resulting energy into a form useful for propulsion for interstellar travel. When one looks at the options we have available to us for first steps into space, we have another option available to us in Mercury.

To achieve interstellar travel, the Kline Directive instructs us to be bold, to explore what others have not, to seek what others will not, to change what others dare not. To extend the boundaries of our knowledge, to advocate new methods, techniques and research, to sponsor change not status quo, on 5 fronts:

1. Legal Standing. 2. Safety Awareness. 3. Economic Viability. 4. Theoretical-Empirical Relationship. 5. Technological Feasibility.

In this post I will explore Legal Standing.

With respect to space exploration, the first person I know of who pushed the limits of the law is Mr. Gregory W. Nemitz of The Eros Project. He started this project in March 2000. As a US taxpayer, Nemitz made the claim that he is the Owner of Asteroid 433, Eros, and published his claim about 11 months prior to NASA landing its “NEAR Shoemaker” spacecraft on this asteroid.

Within a few days of the NEAR Shoemaker spacecraft landing on his property, Nemitz sent an invoice for twenty dollars to NASA, for parking and storage fees at twenty cents per year, payable in one century installments.

Citing faulty interpretation of the Outer Space Treaty of 1967, NASA refused to pay the fees required by Nemitz. This issue then proceeded to court. Unfortunately, on April 26, 2004 U.S. District Court Judge Howard McKibben Ordered the case to be dismissed.

The moral of this real story is that you don’t have to be a high flying physicist, planetary geologist, astrobiologist or propulsion engineer to advocate &/or sponsor interstellar travel initiatives. You could even be a retired coastguard, and miraculous things might happen.

Congratulations Gregory Nemitz for trying something nobody else dared to do in the spirit of the Kline Directive.

Planetary Resources, Inc. whose founders are Eric Anderson and Peter H. Diamandis could possibly provide the second challenge to space law. How? The “treaty also states that the exploration of outer space shall be done to benefit all countries” … you see where I’m going with asteroid mining?

I’m not an attorney, but these are things we need to watch for. In the light of Planetary Resources objectives and activities Nemitz’s parking fee case poses some dilemmas. First, if the US Government will not stand up for its citizens or entities, what is to stop other governments from imposing taxes for mining what is “to benefit all countries”?

Unfriendly governments will be quick to realize that they have nothing to lose and everything to gain by pursuing such claims in international courts, and through UN organizations.

Second, the judicial system could not intervene because, were it to agree, then everyone would have a claim to outer space property without investing in their claim. That would be like saying John Doe, during the gold rush of the 1840s & 1850s, could claim half of California but had no intention to exercise his mining rights.

Everything hinges on what one could consider an ‘investing’. The Homestead Acts of 1862 to 1909 would be a useful analog. These Acts gave an applicant ownership at no cost of farmland called a “homestead” to anyone who had never taken up arms against the U.S. government, had to be 21 or older or the head of a family, live on the land for five years, and show evidence of having made improvements.

So what would an interplanetary equivalent be? You, the reader could propose your version. Here is a first pass at it. There are two parts:

1. Asteroids: An applicant may claim ownership to an asteroid, provided the claimant had never taken up arms against the U.S. government, and can exercise the claim by placing a token of claimant’s ownership on the claimed asteroid within 1,000 Earth days or equivalent, of submitting the claim. Upon placing the token on the asteroid, the claimant is then given 2,000 Earth days or equivalent, to show evidence of having developed the commercial value of the asteroid.

Failure to comply will cause the claim to be null & void and return the asteroid to the public for future applicants to claim the property.

2. Planetary Resources: An applicant may claim ownership of up to 25 km2 of planetary surface, and the mineral & water rights within the area, provided the claimant had never taken up arms against the U.S. government, and can exercise the claim by placing a token of claimant’s ownership on the claimed planetary surface within 1,000 Earth days or equivalent, of submitting the claim. Upon placing the token on the planetary surface, the claimant is then given 2,000 Earth days or equivalent, to show evidence of having developed the commercial value of this planetary surface.

Failure to comply will cause the claim to be null & void and return the planetary surface to the public for future applicants to claim the property.

In the case of gaseous planets like Jupiter, the claim shall be limited to 25 km3 at specified altitudes, longitudes, and latitutes.

Planetary Resources, Inc. I wish you the best.

Previous post in the Kline Directive series.

Next post in the Kline Directive series.

—————————————————————————————————

Benjamin T Solomon is the author & principal investigator of the 12-year study into the theoretical & technological feasibility of gravitation modification, titled An Introduction to Gravity Modification, to achieve interstellar travel in our lifetimes. For more information visit iSETI LLC, Interstellar Space Exploration Technology Initiative.

Solomon is inviting all serious participants to his LinkedIn Group Interstellar Travel & Gravity Modification.

Science and engineering are hard to do. If it wasn’t we would have a space bridge from here to the Moon by now. If you don’t have the real world practical experience doing either science or engineering you won’t understand this, or the effort and resources companies like Boeing, Lockheed, SpaceX, Orbital Sciences Corp, Scaled Composites, Virgin Galactic, and the Ad Astra Rocket Company have put into their innovations and products to get to where they are, today.

If we are to achieve interstellar travel, we have to be bold.
We have to explore what others have not.
We have to seek what others will not.
We have to change what others dare not.

The dictionary definition of a directive is, an instruction or order, tending to direct or directing, and indicating direction.

Dictionary of Military and Associated Terms, US Department of Defense 2005, provides three similar meanings,

1. A military communication in which policy is established or a specific action is ordered.
2. A plan issued with a view to putting it into effect when so directed, or in the event that a stated contingency arises.
3. Broadly speaking, any communication which initiates or governs action, conduct, or procedure.

In honor of the late Prof. Morris Kline who authored Mathematics: The Loss of Certainty, I have named what we need to do to ensure the success of our endeavors for interstellar space travel, as the Kline Directive.

His book could be summarized into a single statement, that mathematics has become so sophisticated and so very successful that it can now be used to prove anything and everything, and therefore, the loss of certainty that mathematics will provide reasonability in guidance and correctness in answers to our questions in the sciences.

To achieve interstellar travel, the Kline Directive instructs us to be bold, to explore what others have not, to seek what others will not, to change what others dare not.

To extend the boundaries of our knowledge, to advocate new methods, techniques and research, to sponsor change not status quo, on 5 fronts:

1. Legal Standing.
2. Safety Awareness.
3. Economic Viability.
4. Theoretical-Empirical Relationship.
5. Technological Feasibility.

I will explore each of these 5 fronts on how we can push the envelop to reach the stars sooner rather than later.

Next post in the Kline Directive series

—————————————————————————————————

Benjamin T Solomon is the author & principal investigator of the 12-year study into the theoretical & technological feasibility of gravitation modification, titled An Introduction to Gravity Modification, to achieve interstellar travel in our lifetimes. For more information visit iSETI LLC, Interstellar Space Exploration Technology Initiative.

Solomon is inviting all serious participants to his LinkedIn Group Interstellar Travel & Gravity Modification.

The shift that has happened in 40 years which mainly has to do with climate change. Forty years ago, I could say in the Whole Earth Catalog, “we are as gods, we might as well get good at it”. Photographs of earth from space had that god-like perspective.

What I’m saying now is we are as gods and have to get good at it. Necessity comes from climate change, potentially disastrous for civilization. The planet will be okay, life will be okay. We will lose vast quantities of species, probably lose the rain forests if the climate keeps heating up. So it’s a global issue, a global phenomenon. It doesn’t happen in just one area. The planetary perspective now is not just aesthetic. It’s not just perspective. It’s actually a world-sized problem that will take world sized solutions that involves forms of governance we don’t have yet. It involves technologies we are just glimpsing. It involves what ecologists call ecosystem engineering. Beavers do it, earthworms do it. They don’t usually do it at a planetary scale. We have to do it at a planetary scale. A lot of sentiments and aesthetics of the environmental movement stand in the way of that.

Continue reading “We are as Gods…” and watch the video interview

The New York Time reported Space Exploration Technologies of Hawthorne, Calif. — SpaceX, for short — launched its Falcon 9 rocket on schedule at 8:35 p.m. Eastern time from Cape Canaveral, Fla.

The Wall Street Journal reported, “trouble-free countdown followed by liftoff at 8:35 p.m. ET, precisely as scheduled.”

Maj. Gen. Charles F. Bolden Jr., the NASA administrator said, “It actually marks the beginning of true commercial spaceflight to take cargo to the International Space Station for us.”

This is a milestone in the relationship between public and private enterprise. The handoff of what public enterprise, NACA/NASA, pioneered, developed and brought to maturity, to private enterprises capable of lowering the costs of space travel with ambitions to do more than stay in low earth orbit.

Congratulations, to Elon Musk, who believed it was possible, and went ahead and proved all the nay sayers wrong. This is an example of how one man’s vision and tenacity has changed the way we perceive the world. Congratulations!

Previous posting in this Debunking Series.

In this post we will look at the last three types of engines. Can these engine technologies be debunked?

Start with the boring stuff. Nuclear/plasma engines. For more information look up Franklin Chang-Diaz’s Variable Specific Impulse Magnetoplasma Rocket (VASIMR). Real. Cannot be debunked.

Now for the more interesting stuff. The second is Pulse Detonation Engines (PDE). This type of engine uses detonation waves to combust fuel and oxidizer mixture. “The engine is pulsed because the mixture must be renewed in the combustion chamber between each detonation wave initiated by an ignition source.” Theoretically this type of engine is capable of speeds from subsonic to Mach 5.

Here is an UT Arlington Feb 2008 YouTube video that shows how elegantly simple, a workable engineering concept is. According to the posting this engine was built and tested in 2005.

Here is a link to Mojave Skies blog posting which shows photographs of an Air Force Research Laboratory (AFRL) subsonic pulsed detonation engine trials (about May 2008), made from off-the-shelf automotive parts. Impressive!

Some history regarding the Mojave Skies blog posting. Scaled Composites is led by Burt Rutan, whose team won the Ansari X-Prize in 2004. Scaled Composites is now owned by Northrup Grumman a defense contractor. What a small world. Everyone is interconnected to everyone else.

What about supersonic trials?

Here is a link to Military, Aviation & Space forum where the jet plumes appeared to be pulsed. The date of this posting is Feb 2008, while the AFRL’s press release is dated May 2008. Here is the AboveTopSecret’s link to a Jun 2008 discussion about what appears to be PDE aircrafts in action. The writers appear to be experienced and leaning toward the PDE aircrafts in the video being real.

My guess is that conventional fuel pulse detonation engines are a reality in experimental supersonic aircrafts, and that the May 2008 AFRL’s press release is about making PDEs cheaper. These engines are real and cannot be debunked.

Now for the third type of engine technology, atomic bomb or nuclear pulse engines. It is quite obvious from the Medusa design that the nuclear energy released by such a device that is used to propel this starship is only 1/6th of the useful energy. Note, useful energy is less than total energy released. Therefore this is an inefficient design.

Further, as the Wikipedia article on nuclear pulse engines points out, there is the Partial Test Ban Treaty that makes such engines illegal. Debunked.

Therefore, nuclear or atomic bomb pulsed engines are debunked, and people who support such ideas are out of touch with reality. Let me quote Billy Currington “God is great, beer is good, people are crazy”.

—————————————————————————————————

Benjamin T Solomon is the author & principal investigator of the 12-year study into the theoretical & technological feasibility of gravitation modification, titled An Introduction to Gravity Modification, to achieve interstellar travel in our lifetimes. For more information visit iSETI LLC, Interstellar Space Exploration Technology Initiative.

Solomon is inviting all serious participants to his LinkedIn Group Interstellar Travel & Gravity Modification.

Previous post in this Debunking Series.

——-

This video was broadcast on G4TV, September 19th 2012.

http://www.g4tv.com/videos/60838/dr-eric-w-davis-on-new-light-speed-breaking-science/

Major Notes from the Video are:

a. Dr. Eric Davis, Senior Research Physicist at the Institute for Advanced Studies, Austin TX.

b. Use exotic energy, quantum energy from vacuum energy, to generate warp drive by surfing space.

c. Surfing on space at faster than the velocity of light.

d. Theory requires stupendous amount of vacuum energy.

e. Sonny White (correct name?) suggests that it could be done with much less energy.

f. Disruptive innovations can happen at any time.

g. Richard Obousy of Icarus Interstellar Inc, using string quantum theory shows that the limit of velocity is 10E32 x c (velocity of light) using quantum string theories.

——-

Need to bear in mind that for interstellar travel to become a reality three factors must be realized.

1) Costs:

From the video this group has not been able to quantify their costs.

2) Technological Feasibility:

As Dr Eric Davis states it might take anywhere from a 100 year to 200 years for this technology to become a reality, but you never know that some disruptive innovation might change all that.

There is another problem with this. Dr. Robert Nemiroff’s Three Photon Observation, which suggests that quantum foam may not exists, therefore falsifying the ability to do interstellar travel in this manner.

Actually come to think about Dr. Eric Davis was describing Dr. Miguel Alcubierre work but substituting Alcubierre’s General Relativity tensors solutions with ‘string quantum’ theory.

3) Safety: Don’t know how to navigate or how to protect crew.

That is a fail on all three counts.

Finally, if I remember correctly, the string theories sits on top of quantum theory and therefore all the discoveries in quantum theory have been translated into string theories. But the string theories by themselves have not been able to predict any new physical behavior, in an ‘a priori’ manner.

For a simple description of quantum foam and vacuum energy see, here.

——-

I put forward a test for these type of proposals, in the comments section of an earlier posting,

https://lifeboat.com/blog/2012/10/debunking-antimatter-rockets-for-interstellar-travel

And here it is, if you had a few millions dollars can you demonstrate experimental feasibility as a propulsion device?

If the answer is ‘no’ then it is debunked if it is ‘yes’ then let’s get the funding. From Dr Eric Davis comments it is clear that the answer is ‘no’.

Appreciate your comments & feedback.

—————————————————————————————————

Benjamin T Solomon is the author & principal investigator of the 12-year study into the theoretical & technological feasibility of gravitation modification, titled An Introduction to Gravity Modification, to achieve interstellar travel in our lifetimes. For more information visit iSETI LLC, Interstellar Space Exploration Technology Initiative.

Solomon is inviting all serious participants to his LinkedIn Group Interstellar Travel & Gravity Modification.

Previous Post in this Debunking Series.

Why is it necessary to debunk bad or unrealistic technologies? If don’t we live in a dream world idealized by theoretical engineering that has no hope of ever becoming financially feasible. What a waste of money, human resources and talent. I’d rather we know now upfront and channel our energies to finding feasible engineering and financial solutions. Wouldn’t you?

We did the math required to figure out the cost of antimatter fuel one would require just to reach 0.1c and then cost at that velocity, never mind about reaching Alpha Centauri.

Table 2: Antimatter Rocket Fuel Costs to Alpha Centuariat 0.1c (in metric tons)
Source of Estimates Amount of Antimatter Required Maximum Velocity

Spacecraft Mass

Cost of Antimatter per kg

(metric tons) (metric tons)

Gerald Smith

NASA

2.5E+16

6.25E+16

Total $ Cost of Fuel for Trip

A Poor Formula for Interstellar Travel

5

0.1c

2,000

1.25E+20

3.13E+20

Project Valkyrie

100

0.1c

100

2.5E+21

6.25E+21

The table above compiled from various sources shows that the cheapest cost of just reaching 0.1c velocity is of the order of $125,000,000,000,000,000,000. This so unthinkably large even I don’t know how to conceptualize it, and by comparison, conventional rockets appear realistic!

Also note that the large variations in the estimates of the amount of antimatter required combined with the larger variations in the mass of the spacecraft antimatter engines could propel. That is no one reallys has a handle on what this would take.

But wait, let me quote EJ Opik, “Is Interstellar Travel Possible?” Irish Astronomical Journal, Vol 6, page 299.

The exhaust power of the antimatter rocket would equal the solar energy power received by the earth — all in gamma rays (and Opik quotes Carl Sagan, Planet. Space Sci., pp. 485–498, 1963) “So the problem is not to shield the payload, the problem is to shield the earth

I don’t need to say more. Debunked.

Next psot in this Debunking Series.

—————————————————————————————————

Benjamin T Solomon is the author & principal investigator of the 12-year study into the theoretical & technological feasibility of gravitation modification, titled An Introduction to Gravity Modification, to achieve interstellar travel in our lifetimes. For more information visit iSETI LLC, Interstellar Space Exploration Technology Initiative.

Solomon is inviting all serious participants to his LinkedIn Group Interstellar Travel & Gravity Modification.

Previous Post in this Debunking Series.

Why is it necessary to debunk bad or unrealistic technologies? If don’t we live in a dream world idealized by theoretical engineering that has no hope of ever becoming financially feasible. What a waste of money, human resources and talent. I’d rather we know now upfront and channel our energies to finding feasible engineering and financial solutions. Wouldn’t you?

We did the math required to figure out how much fuel one would require just to reach 0.1c and then cost at that velocity until you reach Alpha Centauri and reverse thrust to orbit the star.

Table 1: Conventional Rocket Fuel Costs to travel to Alpha Centauri at 0.1c
Maximum Velocity (km/s)

1980’s cost ($/lb)

Proportion by Weight

Amount (lb)

Cost (in 1980 $)

Apollo Fuel Mass

11.2

5,625,000

$20,250,000.00

Alpha Centauri Liquid H2

0.1c or 29,970 km/s

$3.60

82.46%

6.60E+13

$237,473,684,210,526

LOX

$0.08

17.54%

1.40E+13

$1,122,807,017,544

Total

8.00E+13

$238,596,491,228,070

Note: 1) Fuel mass required to reach 0.1c or 29,970 km/s is twice 5,625,000*(29,979/11.2)^2,
once to accelerate 0.1c on leaving Earth and a second time to decelerate at mid
journey to arrive at zero km/s
2) 8.00E+13 lbs converts into 36,287,389,600 metric tons

This analysis assumes that your payload is the about the same size as the Apollo 11 command, service and lunar modules with a combined mass of 46.7 metric tons. That gives you an idea of how impractically small 100 tons is for an interstellar flight.

The total cost of a conventional rocket interstellar trip is on the order of $238,596 billion! Even if we said that the costs are over estimated by 1,000x it would still costs $238 billion!

It is so unrealistic that if you search the internet the parties who say such a trip never discuss how much it will cost. The parties who say it cannot be will also point out the mass of fuel required.

I don’t need to say more. Debunked.

The next in this Debunking Series.

—————————————————————————————————

Benjamin T Solomon is the author & principal investigator of the 12-year study into the theoretical & technological feasibility of gravitation modification, titled An Introduction to Gravity Modification, to achieve interstellar travel in our lifetimes. For more information visit iSETI LLC, Interstellar Space Exploration Technology Initiative.

Solomon is inviting all serious participants to his LinkedIn Group Interstellar Travel & Gravity Modification.

Fukushima reawakened the world to the dangers of nuclear power, and reading back over Fearing Sellafield (2003) by Colum Kenny recently, I reflect back on how deflective and dishonest industry can be to steer clear of critical opinion. Seeing parallels suggested in other industries today, I wonder if much has really changed.

Highly Active Liquor (HAL) produced by the reprocessing of irradiated nuclear fuel at Sellafield, reached a level of 1,500 cubic meters in storage at its peak circa 2001, the capacity of a 50 meter Olympic swimming pool. Particularly unstable, a disruption to electricity & water coolant could result in such liquor boiling, overloading the ventilation filtration systems and leading to a nuclear accident. Containing about 80 times the amount released during the 1986 Chernobyl accident according to a report for the European Parliament at that time, we are rather fortunate such a serious accident never occurred. This analysis was provided by what became known as The WISE Report — so called due to associated with the World Information Service on Energy (WISE) in Paris. In response BNFL set out to reduce this liquor to a solid form known as ‘glass’ — borosilicate glass — much safer than when kept in liquid form, and put in storage — though much of it still remains to be vitrified.

In 2000/2001, the Nuclear Installations Inspectorate (NII) of the HSE published a number of reports on aspects of Sellafield that led to causes of concern. One report in particular entitled ‘an investigation into the falsification of pellet diameter data in the MOX demonstration facility at the BNFL Sellafield site and the effect of this on the safety of MOX fuel in use’ suggested deliberate dishonesty in keeping records. BNFL subsequently complied with most of these recommendations.

Authors of the WISE report however still had concerns regarding increases in levels in certain sea discharges and aerial releases, and inconsistent with the UK’s obligations under the OSPAR Convention. It stated that the deposition of plutonium within 20km of Sellafield attributable to aerial emissions has been estimated at 160–280 billion becquerels — several times the plutonium fallout from all atmospheric nuclear weapons testing, and that 250kg-500kg of plutonium from Sellafield has been absorbed as sediments on the bed of the Irish sea ‘representing a long-term regional hazard of largely unknown proportions’. The report had been treated with caution by the European Commission and conveniently dismissed by the National Radiological Protection Board in the UK by claiming that some of the conclusions drawn in the report were based on ‘lacking objectivity’. It seems that governments are always bent towards safeguarding industry first, leaving environmental concerns and the health of our Mother Ship as a secondary issue.