Toggle light / dark theme

The only slight hitch is it costs as much as a brand new Rolls-Royce Phantom, so it’s for millionaires.

We wrote earlier this year that because the demand for electrified classics was on the rise, Lunaz, U.K.-based company that specializes in EV conversions had doubled its workforce to keep up with demand. The company’s first product was a pure-electric 1953 Jaguar XK120, but if that was not opulent enough, it now offers a car that makes a lot of sense on paper: an electric 1961 Rolls-Royce Phantom V.

In fact, an old electric Roller is about as fitting as an EV converted classic could get, simply because no internal combustion engine can match the blend of smoothness, quietness and power provided by an electric motor. To top it all off, the guys from Lunaz equip their electric Phantom with a really big 120 kWh battery pack that is said to provide enough juice for a range of 300+ miles (480+ km).

Air conditioners are a convenient way to cool down offices and homes, but they use huge amounts of energy in the process. A team of scientists has been developing an alternative solution for those warm summer months called the Cold Tube, which works by absorbing body heat emitted from a person and can use around half the energy of traditional systems as a result.

The notoriously bad energy efficiency of air conditioners has motivated the development a range of environmentally friendly solutions, from attachments that use water mist to pre-cool the units to solar-powered systems that produce hot water at the same time. In 2018, Richard Branson even launched a US$3 million competition aimed at developing more energy efficient air conditioners.

Similarly, the research team behind the Cold Tube has been investigating next-generation systems that keep people cool in more efficient ways. Made up of scientists from the University of British Columbia, Princeton University, the University of California, Berkeley and the Singapore-ETH Centre, the team took aim at the dehumidification process that is a critical function of today’s air conditioning systems.

Circa 2014


The waste fibres from hemp crops can be transformed into high-performance energy storage devices, scientists say.

They “cooked” cannabis bark into carbon nanosheets and built supercapacitors “on a par with or better than graphene” — the industry gold standard.

Electric cars and power tools could harness this hemp technology, the US researchers say.

As levels of atmospheric carbon dioxide continue to climb, scientists are looking for new ways of breaking down CO2 molecules to make useful carbon-based fuels, chemicals and other products. Now, a team of Brown University researchers has found a way to fine-tune a copper catalyst to produce complex hydrocarbons—known as C2-plus products—from CO2 with remarkable efficiency.

In a study published in Nature Communications, the researchers report a catalyst that can produce C2-plus compounds with up to 72% faradaic efficiency (a measure of how efficiently is used to convert carbon dioxide into chemical reaction products). That’s far better than the reported efficiencies of other catalysts for C2-plus reactions, the researchers say. And the preparation process can be scaled up to an industrial level fairly easily, which gives the new catalyst potential for use in large-scale CO2 recycling efforts.

“There had been reports in the literature of all kinds of different treatments for that could produce these C2-plus with a range of different efficiencies,” said Tayhas Palmore, the a professor of engineering at Brown who co-authored the paper with Ph.D. student Taehee Kim. “What Taehee did was a set of experiments to unravel what each of these treatment steps was actually doing to the catalyst in terms of reactivity, which pointed the way to optimizing a catalyst for these multi-carbon compounds.”

Headed to the Red Planet with the Perseverance rover, the pioneering helicopter is powered up for the first time in interplanetary space as part of a systems check.

NASAs Ingenuity Mars Helicopter received a checkout and recharge of its power system on Friday, August 7, one week into its near seven-month journey to Mars with the Perseverance rover. This marks the first time the helicopter has been powered up and its batteries have been charged in the space environment.

During the eight-hour operation, the performance of the rotorcraft’s six lithium-ion batteries was analyzed as the team brought their charge level up to 35%. The project has determined a low charge state is optimal for battery health during the cruise to Mars.

Fired brick is a universal building material, produced by thousand-year-old technology, that throughout history has seldom served any other purpose. Here, we develop a scalable, cost-effective and versatile chemical synthesis using a fired brick to control oxidative radical polymerization and deposition of a nanofibrillar coating of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT). A fired brick’s open microstructure, mechanical robustness and ~8 wt% α-Fe2O3 content afford an ideal substrate for developing electrochemical PEDOT electrodes and stationary supercapacitors that readily stack into modules. Five-minute epoxy serves as a waterproof case enabling the operation of our supercapacitors while submerged underwater and a gel electrolyte extends cycling stability to 10,000 cycles with ~90% capacitance retention.