Toggle light / dark theme

A team of researchers at Korea’s LG Electronics, working with a group at Fraunhofer-Gesellschaft, has successfully sent data 100 meters over a 6G signal. Officials at LG have posted details of their test of the next step wireless transmission technology on their company news page.

As 5G networks for cellular service have slowly made their way around the globe, engineers at multiple have been hard at work on next-generation 6G . Moving to the new technology is expected to push data transmission speeds to 50 times faster than 5G. It is also expected to cut latency to just 10% that of 5G, making conversations sound more natural. And the new standard is also expected to improve the accuracy of the data sent. Together, these improvements could drive a wave of new “Internet of Everything” development, with new devices aimed at both the home and workplace.

Scientists have long recognized that achieving the next step in transmission technology will be more difficult than those that came before due to a major problem with 6G signaling; it is short-range due to loss of power as it is transmitted. For this reason, the global standards body for data communications has set its commercialization date for 2,025 while most in the field do not expect actual sales to begin until2029or later.

The sleeping giant that is Tesla Energy is showing signs that it is waking up. This became quite evident in Texas as Tesla filed an application with the Texas Public Utility Commission to sell power in the state. Tesla’s application came as the company pursues a number of high-profile battery storage projects in the state, such as a 100 MW system in Angleton, TX, and a 250 MW battery near Giga Texas.

The flings, which were initially reported in Texas Monthly, were filed in mid-August by a new Tesla subsidiary called Tesla Energy Ventures. In classic Tesla fashion, the public details about the initiative are pretty scarce, though individuals familiar with the matter have noted that if the filings are approved this November, Tesla Energy Ventures may very well stand out among the state’s crowded, deregulated retail energy market.

Texas is home to numerous electricity companies, and Tesla, which has made a name for itself as a premium brand, would likely not fight it out with the state’s bargain power retailers. Tesla could have an edge against its competitors, however, as the company could sell power that is either drawn from the grid or pulled from residential Tesla batteries in the event of a blackout. Tesla may even allow Texans with solar panels to earn money by sharing their excess power with the grid.

South Korean company LG Electronics, working with German research organisation The Fraunhofer Society, has successfully transmitted data a distance of 100 metres with a 6G signal.

6G is the next generation of wireless communication technology, following the current 5G standard. It operates at much higher frequencies than the latter and is expected to offer a ten-fold boost in data rates when eventually commercialised.

Still in the early stages of research and development, 6G is currently limited to short ranges and has the problem of power loss during transmission and reception between antennas. A major technical challenge to date has been the need for power amplification to generate a stable signal across ultra-wideband frequencies. The power amplifier developed by LG and its German partners was crucial to the success of this latest test. It generated a stable signal output up to 15 dBm in the frequency range between 155 to 175 GHz.

Purple is the new black.


Purple bacteria are poised to turn your toilet into a source of energy and useable organic material.

Household sewage and industrial wastewater are very rich in organic compounds, and organic compounds can be very useful. But there’s a catch: we don’t know of any efficient way to extract them from the eww goo yet. So these resource-laden liquids get treated, and the material they contain is handled as a contaminant.

New research plans to address this problem — and by using an environmentally-friendly and cost-efficient solution to boot.

Jackson continues by saying that blue hydrogen is “at best an expensive distraction, and at worst a lock-in for continued fossil fuel use” which would derail goals that the country and the world have set for decarbonizing the economy. He takes particular issue with the fact that oil and gas companies have asked the UK government for decades of subsidies while also claiming that blue hydrogen will be inexpensive to produce. “If the false claims made by oil companies about the cost of blue hydrogen were true, their projects would make a profit by 2030,” he told The Guardian.


Recent studies have questioned blue hydrogen’s low-carbon bona fides.

Researchers are studying adding carbon capture technologies to vehicles so that the CO2 can be sequestered or recycled into renewable hydrocarbon fuels.

According to senior researcher of the study; “This technology really doesn’t have any major hurdles to making it work,”


When people talk about how to eliminate vehicles’ carbon dioxide (CO2) emission, often the conversation often focuses on electrifying cars, trucks and buses. Yet cargo and tanker ships, which are responsible for 3% of all CO2 emissions, are rarely a part of the discussion.

Now a Northwestern University research team offers a practical way to make ships CO2 neutral—or even CO2 negative—with CO2-capturing solid oxide fuel cells. After “burning” traditional carbon-based fuels, the fuel cell generates concentrated CO2 that can be stored on-board the ship. From there, the CO2 can either be sequestered or recycled into a renewable hydrocarbon fuel.

The team presents its analysis in “Viability of vehicles utilizing on-board CO2 capture,” published today (Aug. 18) in the journal ACS Energy Letters. In the paper, the team looks at various factors, including fuel volumes and mass requirements for a wide range of vehicle classes—from light-duty passenger vehicles to tanker ships—and compares onboard CO2 capture to battery electric and hydrogen fuel cell options.

DP World has completed testing of the Boxbay fully automated container storage system at its Jebel Ali terminal in Dubai, accomplishing more than 63,000 container moves since the facility was commissioned earlier this year.

The facility, which can hold 792 containers at a time, exceeded expectations, delivering faster and more energy-efficient than anticipated, the Dubai-headquartered terminal operator said.

The solar-powered system stores containers in slots in a steel rack up to eleven high. DP World claims Boxbay delivers three times the capacity of a conventional yard in which containers are stacked directly on top of each other, reducing the footprint of terminals by 70% and energy costs by 29%. Boxbay delivered 19.3 moves per hour at each waterside transfer table to the straddle carrier and 31.8 moves per hour at each landside truck crane.