Toggle light / dark theme

How does one prevent hacking from a QC system? Easy, on board to QC first before others do.


Quantum computers have the potential to perform calculations faster than ever possible before, inviting a significant rethink in how we approach cyber security.

Given the amount of research being ploughed into this area, we are likely to see a commercially viable machine in the near future, so cryptographers and the cyber security industry in general should work to have a clear view on the implications way ahead of that achievement.

Sure, But What Is Quantum Computing?

Every current computer — smartphones, laptops, smart TVs — manipulates binary digits (bits), and these bits can only have two values: “0” or “1”. (Note: bits are also used to quantify the strength of an encryption method e.g. 128-bit, 256-bit encryption… the more the better!) Quantum computers, however, use quantum bits (also known as “qubits”), where the value can be 0, 1 or both.

Read more

Luv the map; however, missing a lot of info. Namely, many decades and contributors. QC officially recorded to start in 1960 with Stephen Wiesner discovery of a cryptographic tool. And, even modern day QC such as a QC Net has been in existence since late 90s with Los Alamos.

Still nice colored map for a limited view of 2014, 2015, and current. However, I don’t see the ORNL, Oxford, U. of Sydney, China, USC, MIT, etc. breakthroughs most importantly the scalable Quantum, syn. diamonds contribution to enable stable QC and QC Net.


From law enforcement to criminals, governments to insurgents, and activists to Facebook dabblers, many people have come to rely on encryption to protect their digital information and keep their communications secure. But the current forms of encryption could be obsolete the moment anyone succeeds in building a quantum computer. A what! Read on about the brave new world awaiting us.

Quantum Computers and the End of Privacy

Infographic by: www.whoishostingthis.com

Read more

Worried about security for your bitcoin in the face of quantum computing? According to computer researchers, there’s no reason to be.

Source: https://hacked.com/breathe-easy-bitcoiners-quantum-computing-no-match-for-sha-2-encryption

Quantum mech

Some people assume that once quantum computing comes along modern encryption technologies will be outpowered. But experts are starting to posit that hash functions and asymmetric encryption could defend not only against modern computers, but also against quantum attackers from the future.

Matthew Amy from Canada’s University of Waterloo proposes just this in a paper by the International Association of Cryptologic Research.

Amy, and researchers from Perimeter Institute for Theoretical Physics and the Canadian Institute for Advanced Research, examined attacks against SHA-2 and SHA-3 with Grover’s algorithm.

Grover’s algorithm is a quantum algorithm that finds with high probability the input to black box functions that produce particular, and predictable, output values.

Grover’s algorithm could brute-force a 128-bit symmetric cryptographic key in roughly 264iterations,” Wikipedia states, “or a 256-bit key in roughly 2128 iterations. As a result, it is sometimes suggested that symmetric key lengths be doubled to protect against future quantum attacks.”

Researchers surmise SHA-256 and SHA3-256 need 2166 “logical qubit cycles” to break, and the paper suggests quantum papers pose little threat, though classical processors will need to manage them.

The paper notes: “The main difficulty is that the coherence time of physical qubits is finite. Noise in the physical system will eventually corrupt the state of any long computation,” the paper states. “Preserving the state of a logical qubit is an active process that requires periodic evaluation of an error detection and correction routine.”

With ASICs running at a few million hashes per second, it would take Grover’s algorithm 1032 years to crack SHA-256 or SHA3-256. That is longer than the universe has existed.

As The Register adds: “Even if you didn’t care about the circuit footprint and used a billion-hash-per-second Bitcoin-mining ASIC, the calculation still seems to be in the order of 1029 years.”

SHA-2 is the set of cryptographic hash functions designed by the National Security Agency (NSA), an intelligence branch of the US government under scrutiny for ubiquitous surveillance due to revelations released by Edward Snowden. SHA stands for “Secure Hash Algorithm.”

These hash functions represent mathematical operations run by digital means Cryptographic hash functions boast collision resistance, which means attackers cannot find two different input values that result in the same hash output. The SHA-2 family is comprised of altogether six hash functions with hash values that are 224, 256, 384 or 512 bits: SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256.

SHA-256 and SHA-512 are novel hash functions computed with 32-bit and 64-bit words, respectively.

Google has built machine learning systems that can create their own cryptographic algorithms — the latest success for AI’s use in cybersecurity. But what are the implications of our digital security increasingly being handed over to intelligent machines?

Google Brain, the company’s California-based AI unit, managed the recent feat by pitting neural networks against each other. Two systems, called Bob and Alice, were tasked with keeping their messages secret from a third, called Eve. None were told how to encrypt messages, but Bob and Alice were given a shared security key that Eve didn’t have access too.

ai-cybersecurity-7

In the majority of tests the pair fairly quickly worked out a way to communicate securely without Eve being able to crack the code. Interestingly, the machines used some pretty unusual approaches you wouldn’t normally see in human generated cryptographic systems, according to TechCrunch.

Read more

Extremely accurate measurements of microwave signals can potentially be used for data encryption based on quantum cryptography and other purposes.

Researchers at Aalto University and the University of Jyväskylä have developed a new method of measuring extremely accurately. This method can be used for processing quantum information, for example, by efficiently transforming signals from microwave circuits to the optical regime.

Read more

Fortifying cybersecurity is on everyone’s mind after the massive DDoS attack from last week. However, it’s not an easy task as the number of hackers evolves the same as security. What if your machine can learn how to protect itself from prying eyes? Researchers from Google Brain, Google’s deep Learning project, has shown that neural networks can learn to create their own form of encryption.

According to a research paper, Martín Abadi and David Andersen assigned Google’s AI to work out how to use a simple encryption technique. Using machine learning, those machines could easily create their own form of encrypted message, though they didn’t learn specific cryptographic algorithms. Albeit, compared to the current human-designed system, that was pretty basic, but an interesting step for neural networks.

To find out whether artificial intelligence could learn to encrypt on its own or not, the Google Brain team built an encryption game with its three different entities: Alice, Bob and Eve, powered by deep learning neural networks. Alice’s task was to send an encrypted message to Bob, Bob’s task was to decode that message, and Eve’s job was to figure out how to eavesdrop and decode the message Alice sent herself.

Read more

Get Ready Folks! Imagine a QC DarkNet as it will too come.


Quantum teleportation brings to mind Star Trek’s transporter, where crew members are disassembled in one location to be reassembled in another. Real quantum teleportation is a much more subtle effect where information is transferred between entangled quantum states. It’s a quantum trick that could give us the ultimate in secure communication. While quantum teleportation experiments have been performed countless times in the lab, doing it in the real world has proved a bit more challenging. But a recent experiment using a dark fibre portion of the internet has brought quantum teleportation one step closer to real world applications.

The backbone of the internet is a network of optical fibre. Everything from your bank transactions to pictures of your cat travel as beams of light through this fibre network. However there is much more fibre that has been laid than is currently used. This unused portion of the network is known as dark fibre. Other than not being currently used, the dark fiber network has the same properties as the web we currently use. This new experiment used a bit of this dark web in Calgary to teleport a photon state under real world conditions.

The basic process of quantum teleportation begins with two objects (in this case photons) that are quantumly entangled. This basically means the state of these two objects are connected in such a way that a measurement of one object affects the state of the other. For quantum teleportation, one of these entangled objects is measured in combination with the object to be “teleported” (another photon). The result of this measurement is then sent to the other location, where a similar combined measurement is made. Since the entangled objects are part of both measurements, quantum information can be “teleported.” This might seem like an awkward way to send information, but it makes for a great way to keep your messages secret. Using this method, Alice can basically encrypt a message using the entangled objects, send the encrypted message to Bob, who can then make his own measurement of the entangled state to decode the message.

Read more