Light’s compact L16 camera has 16 camera modules on its front, and is gunning to kill DSLRs.
Category: electronics
https://youtube.com/watch?v=FzZSpiqvb1Q
Socks are the hardest. For a future washing machine that washes, dries and then folds the results, it’s one of the small barriers that remains in that latter stage. But as a research project that started back in 2008, Laundroid is finally getting there. Next year, the collaboration between housing firm Daiwa House, electronics company Panasonic and Seven Dreamers will start offering preorders, the year after that ‘beta’ machines, then folding machines for big institutions, with event full retail planned the year after that — we’ll be in 2019 by then. (That said, the all-in-one model is still at the in-development stage). There’s no price and the presentation we saw added in a bunch of mosaic filtering on top as the shirt gradually got folded so you couldn’t see how the thing actually works. But that’s okay. We can wait. It’s not going to stop us waiting our chore-dodging dreams to come true.
While the video teaser above gives you pretty much nothing of substance, at the on-stage demonstration, we saw a just-washed tee take a matter of minutes for the internal tech to sort, identify and fold. The tech involved is separated into two very separate parts: image analysis and robotics. With a hypothetical bundle of clothes, each item demands different folding (we’re going to say) techniques, so the machine needs to figure what that soft lump of cloth is, then prime it for folding. The presentation here at CEATEC elaborated (if only lightly) on the stages it’s taken to get to here: it’s been a pretty long journey.
Blue Brain Project supercomputer recreates part of rodent’s brain with 30,000 neurons connected by 40m synapses to show patterns of behaviour triggered, for example, when whiskers are touched.
A new type of “quasiparticle” theorized by Caltech’s Gil Refael, a professor of theoretical physics and condensed matter theory, could help improve the efficiency of a wide range of photonic devices—technologies, such as optical amplifiers, solar photovoltaic cells, and even barcode scanners, which create, manipulate, or detect light.
Memory loss is a truly devastating part of dementia, but this invention aims to fix that by bypassing the damage, and repairing long term memory.
Alzheimer’s and dementia are complex diseases, and there’s currently no effective treatment. Given the unpleasant nature of the disease, there’s an urgent need for results. Instead of taking the usual biological route, one team has constructed a prosthetic made up of a small electrode array — which can help re-encode short term memory into long term.
Built using decades of research, the device operates using a new algorithm based on accumulated neural data. New sensory information is normally translated into a quick memory and transported as an electrical signal through the hippocampus, potentially for long term storage. If this region is damaged then the process is disturbed, and new experiences fail to be encoded. Alzheimer’s patients can often remember childhood events, but struggle with recent experiences; specifically because of this hippocampal damage.
A British tech company has come up with a new way of powering wearables and smart home devices: a device called the Freevolt, which can harvest the ambient energy from radio waves and turn it into a small amount of electricity for low-energy gadgets to tap into.
As CNET reports, this level of energy can’t keep a smartphone running, but it could be enough to power that remote sensor on your garden gate. If sensors and beacons have a wireless energy source plus wireless connectivity, it opens up more possibilities for kitting out our homes and gardens with these kind of devices.
“Companies have been researching how to harvest energy from Wi-Fi, cellular, and broadcast networks for many years,” Drayton Technologies CEO and chairman, Lord Drayson, said in a press statement. “But it is difficult, because there is only a small amount of energy to harvest and achieving the right level of rectifying efficiency has been the issue — up until now. For the first time, we have solved the problem of harvesting usable energy from a small radio frequency signal.”
Sign language has helped the hearing-impaired communicate for many centuries, way before it was formalised and officially recognised, but this long-standing language of gestures has now been given a 21st-century technological upgrade. Saudi designer and media artist Hadeel Ayoub has invented a smart glove that recognises hand movements and converts them into the relevant text.
Much like Google Translate can give anyone a basic grasp of a foreign language in an instant, this glove is designed to help sign language users make themselves understood by those who can’t usually interpret it.
Five flex sensors sit on the fingers, monitoring how they’re being manipulated, while an accelerometer integrated into the fabric of the glove figures out how the hand is being held and the direction in which it’s pointing. Through three successive prototypes, the glove has been made thinner, lighter, and faster, and the latest version includes a text-to-speech chip to vocalise the words as they’re signed.
Founded in 2005, Polyera has developed deep and unique expertise spanning science, engineering, and design focused on flexible electronics.
As implants and bio-hacking gain popularity, could tweaking the body’s circuits become a mainstay in future medicine?
Bioelectronics offer everything from precise diabetes treatment to appetite reduction. In a world where most of us have a phone glued to our hand at all times, combining ‘wetware’ with hardware is starting to make real sense.
IBM announced a major engineering breakthrough that could open the way to replacing silicon transistors with carbon nanotubes in future electronics and computing technologies.
Silicon transistors have become dramatically smaller in the last decades following Moore’s Law — the observation that the number of transistors per unit area doubles every two tears. However, silicon transistor technology is approaching a point of physical limitation.
With Moore’s Law running out of steam, shrinking the size of transistors — including the channels and contacts — without compromising performance is a research and manufacturing challenge. Carbon nanotube technology could lead to much smaller transistors and keep electronics and computing devices on the Moore’s Law of exponentially decreasing size and thus increasing performance. However, as devices become smaller, increased contact resistance for carbon nanotubes has hindered performance gains until now.