Toggle light / dark theme

Just about everyone has had the experience of blinking while having their picture taken. The camera clicks, your eyes shut, and by the time they open again, the photo is ruined. A new ultrafast camera developed at Caltech, were it aimed at your lovely face, could also capture you looking like a dunce with your eyes shut, except instead of taking just one picture in the time it takes you to blink, it could take trillions of pictures.

The developed in the lab of Lihong Wang, Bren Professor of Medical Engineering and Electrical Engineering in the Andrew and Peggy Cherng Department of Medical Engineering, is capable of taking as many as 70 trillion frames per second. That is fast enough to see waves of light traveling and the fluorescent decay of molecules.

The , which Wang calls compressed ultrafast spectral photography (CUSP), is similar in some respects to previous fast cameras he has built, such as his phase-sensitive compressed ultrafast photography, or pCUP, device, which can take 1 trillion frames per second of transparent objects and phenomena.

Islamic religious scientist points out a hidden existential threat, worse even than the SARS-CoV-2 virus: two-legged viruses that spread liberal democracy.


Iranian scholar Alireza Ebadi, Supreme Leader Ayatollah Ali Khamenei’s representative in the Southern Khorasan Province, said in a lecture that aired on Khorasan Jonoobi TV (Iran) on April 10, 2020 that the “virus” of Western liberal democracy is even worse than the coronavirus since it has caused the deaths and displacement of millions of people, two world wars, coups in various countries such as Iraq, the spread of cholera in Yemen, and Western intervention in Syria, Afghanistan, India, Pakistan, and elsewhere. Ebadi expressed hope that once humanity defeats the “pest” of the coronavirus, it will “make sure the greatest pests of all do not escape.” He added: “May God [save] humanity from [the] two-legged viruses.”

DisplayPort Alt Mode 2.0 is a new standard from the Video Electronics Standards Association that allows USB 4 to offer all the bells and whistles of the DisplayPort 2.0 standard as well as transmitting USB data. That means support for 8K displays at 60Hz with HDR, 4K displays at 144Hz with HDR, or even 16K (15360×8460) displays at 60Hz with compression. It’s a big step towards USB Type-C becoming a true jack-of-all trades connector.

The USB 4 spec can already transmit DisplayPort data, but AnandTech reports that the new standard remaps USB-C’s high speed data pins to unlock more bandwidth for video. USB 4 is bidirectional, meaning it can carry up to 40Gbps of data in either direction. However, video doesn’t need to go both ways — you only really need data to pass from your laptop to your monitor (for example). This alt mode means that all that bandwidth can be used to just send video one way, meaning you get a maximum raw bandwidth of up to 80Gbps.

Thermal cameras sound like a great idea for folks who are looking for a false sense of security and/or lack a basic understanding of what being an asymptomatic carrier means…


When the Venetian Resort reopens following the lifting of Las Vegas’ stay-at-home order, it will empoy thermal screening and full-time medics.

As electronic devices become progressively smaller, the technology that powers them needs to get smaller and thinner.

One of the key challenges scientists face in developing this technology is finding materials that can perform well at an ultrathin size. But now, Berkeley researchers think they may have the answer.

Led by Sayeef Salahuddin, professor of electrical engineering and computer sciences, and graduate student Suraj Cheema, a team of researchers has managed to grow onto silicon an ultrathin material that demonstrates a unique electrical property called ferroelectricity. The duo’s findings were published in the April 22 issue of Nature.

👽 Giant Viruses : “Mimiviruses”

(Jan 2016)

Fyodor R., issue 3, refund institute

Biologist Didier Raoult is one of the leading experts in Microbiology, he is all over TV right now in France, providing leadership during this Covid outbreak of 2020.

👽 What are they?

Mimiviruses are so large that they are visible under a light microscope. Around half a micrometre across, and first found infecting amoebae living in a water tower, they boast genomes that are larger than those of some bacteria. They are distantly related to viruses that include smallpox, but unlike most viruses, they have genes to make amino acids, DNA letters and complex proteins.

Gigantic mimiviruses fend off invaders using defences similar to the CRISPR system deployed by bacteria and other microorganisms, French researchers report. They say that the discovery of a working immune system in a mimivirus bolsters their claim that the giant virus represents a new branch in the tree of life.


Nature volume 531, pages 249 – 252 (2016)Cite this article.

A.L., B.L. and D.R. conceived the project and designed the study and experiments; A.L., M.B., P.P., B.L. and D.R. analysed the results; A.L. and D.R. wrote the manuscript. All authors read and approved the final manuscript.

This file contains additional information such as Exif metadata which may have been added by the digital camera, scanner, or software program used to create or digitize it. If the file has been modified from its original state, some details such as the timestamp may not fully reflect those of the original file. The timestamp is only as accurate as the clock in the camera, and it may be completely wrong.

Inadequate ventilator settings may cause overwhelming inflammatory responses associated with ventilator-induced lung injury (VILI) in patients with acute respiratory distress syndrome (ARDS). Here, we examined potential benefits of glutamine (GLN) on a two-hit model for VILI after acid aspiration-induced lung injury in rats. Rats were intratracheally challenged with hydrochloric acid as a first hit to induce lung inflammation, then randomly received intravenous GLN or lactated Ringer’s solution (vehicle control) thirty min before different ventilator strategies. Rats were then randomized to receive mechanical ventilation as a second hit with a high tidal volume (TV) of 15 mL/kg and zero positive end-expiratory pressure (PEEP) or a low TV of 6 mL/kg with PEEP of 5 cm H2O. We evaluated lung oxygenation, inflammation, mechanics, and histology. After ventilator use for 4 h, high TV resulted in greater lung injury physiologic and biologic indices. Compared with vehicle treated rats, GLN administration attenuated lung injury, with improved oxygenation and static compliance, and decreased respiratory elastance, lung edema, extended lung destruction (lung injury scores and lung histology), neutrophil recruitment in the lung, and cytokine production. Thus, GLN administration improved the physiologic and biologic profiles of this experimental model of VILI based on the two-hit theory.

Keywords: acid aspiration, ARDS, glutamine, ventilator-induced lung injury.

Acute respiratory distress syndrome (ARDS) is a catastrophic syndrome among critically ill patients. One of its major causes is acid aspiration as an initial pneumonitis that may be complicated by subsequent bacterial pneumonia after inhaling low pH gastric fluid [1, 2, 3, 4]. Gastric fluid aspiration frequently occurs in trauma or critical patients with head trauma, alcohol or cerebrovascular accidents, and is also a complication of general anesthesia that occurs in 1 in 2000–3000 cases when anesthetics are used [3, 4].

An international team of scientists led by the University of the Witwatersrand in South Africa, has been able to reconstruct, in the smallest details, the skulls of some of the world’s oldest known dinosaur embryos in 3D, using powerful and non-destructive synchrotron techniques at the ESRF, the European Synchrotron in France. They found that the skulls develop in the same order as those of today’s crocodiles, chickens, turtles and lizards. The findings are published today in Scientific Reports.

University of the Witwatersrand scientists publish 3D reconstructions of the ~2cm-long skulls of some of the world’s oldest dinosaur embryos in an article in Scientific Reports. The embryos, found in 1976 in Golden Gate Highlands National Park (Free State Province, South Africa) belong to South Africa’s iconic dinosaur Massospondylus carinatus, a 5-meter long herbivore that nested in the Free State region 200 million years ago.

The scientific usefulness of the embryos was previously limited by their extremely fragile nature and tiny size. In 2015, scientists Kimi Chapelle and Jonah Choiniere, from the University of Witwatersrand, brought them to the European Synchrotron (ESRF) in Grenoble, France for scanning. At the ESRF, an 844 metre-ring of electrons travelling at the speed of light emits high-powered X-ray beams that can be used to non-destructively scan matter, including fossils. The embryos were scanned at an unprecedented level of detail — at the resolution of an individual bone cell. With these data in hand, and after nearly 3 years of data processing at Wits’ laboratory, the team was able to reconstruct a 3D model of the baby dinosaur skull. “No lab CT scanner in the world can generate these kinds of data,” said Vincent Fernandez, one of the co-authors and scientist at the Natural History Museum in London (UK).