Toggle light / dark theme

BMI technology is like anything else; you have an evolution process to finally reach a level of maturity. The good news is that at least at this point of time BMI is at least in that cycle where we are no longer crawling and trying to stand up. We’re in that stage of the cycle where we are standing up and taking a couple of steps at a time. In the next 3 to 5 years, things should be extremely interesting in the BMI space especially as we begin to introduce more sophisticated technology to our connected infrastructure.


Will future soldiers be able to use a direct brain interface to control their hardware?

Imagine if the brain could tell a machine what to do without having to type, speak or use other standard interfaces. That’s the aim of the US Defense Advanced Research Projects Agency (DARPA), which has committed US$60 million to a Neural Engineering System Design (NESD) project to do just that.

“Today’s best brain-computer interface systems are like two supercomputers trying to talk to each other using an old 300-baud modem,” said Phillip Alvelda, the NESD program manager. “Imagine what will become possible when we upgrade our tools to really open the channel between the human brain and modern electronics.”

Read more

My new Psychology Today story on BREXIT and the EU:


Scientific innovation doesn’t just happen on its own. It takes stable economies, free societies, and open-minded governments. The best environment for science to thrive in is that of collaborating groups incentivized to communicate and cooperate with one another. This is precisely what the European Union is.

And now, more than ever, the union of Europe is needed—because we are crossing over into the transhumanist age, where radical science and technology will engulf our lives and challenge our institutions. Robots will take 75% of the jobs in the next 25 years. CRISPR gene editing technology will allow us to augment our intelligence, perhaps doubling our IQ. Bionic organs will stave off death, allowing 200 year lifespans.

The science and technology coming in just the next two decades will cause unprecedented challenges to humanity. Most of the world will get chip implants— I have one —to assist with quick payments, emergency tracking, and to replace archaic accessories like car keys. We’ll also all use genetic therapies to cure cancer, heart disease, Alzheimer’s, and even aging. And robots will be ubiquitous—driving us everywhere, homeschooling our children, and maybe even becoming preferred sexual partners.

Read more

Has anyone ever run the numbers on just how many people hours and $ spent on AI since 1950? Think about it for a minute; and how little we have advance v. the enhancement of people since the 1990 with BMI technology, bionics, etc. and it’s cost. My guess is Mr. Elon Musk understands the ROI extremely well between AI/ Robots v. human enhancement technology especially where there is a larger return and repeat business opportunity.


Computing has been getting much smarter since the idea of artificial intelligent was first thought of 60 years ago. But are computers intelligent?

Read more

Actually, it is proving to be more effective, cheaper and quicker to advance people with technologies such as BMI v. trying to create machines to be human. BMI technology started development in the 90’s for the most part; and today we have proven tests where people have used BMI to fly drones and operate other machinery as well as help others to have feelings in prosthesis arm or leg, etc. So, not surprised by Musk’s position.


Would you ever chip yourself? The idea of human microchipping, once confined to the realms of science fiction and conspiracy theory, has fascinated people for ages, but it always seemed like something for the distant future. Yet patents for human ‘implants’ have been around for years, and the discussion around chipping the human race has been accelerating recently.

Remember when credit and debit cards went from smooth plastic to microchipped? That could be you in a few years, as multiple corporations are pushing to microchip the human race. In fact, microchip implants in humans are already on the market, and an American company called Applied Digital Solutions (ADS) has developed one approximately the size of a grain of rice which has already been approved by the U.S. Food and Drug Administration for distribution and implementation. Here is a video taken three years ago of DARPA Director and Google Executive Regina Dugan promoting the idea of microchipping humans.

Read more

Together, Eidos Montreal, Square Enix, and OpenBionics are working on the development of two Deus Ex inspired bionic arms, which are set to be finished in 2017. The first model is inspired by Adam Jensen’s own bionic arm, and the second is described as the Deus Ex Universe arm. The 3D illustrations of the arms are undeniably stunning, as Vu added that “we wanted something to touch upon high fashion…something that looks very slick and you could be very proud to wear.”

Continue to read on http://www.3ders.org/

#obminitiative

Read more

Robotic exoskeletons, long a staple of sci-fi novels, comic books, and movies, are now part of the real world—and they’ve mostly followed the sci-fi model. That is, exoskeletons are wearable robots. All metal, all the time. But metal suits are heavy and power hungry, and the human body isn’t metal. If you actually plan to use an exoskeleton for an extended period of time, this can be a bit of a design flaw.

That’s where a new exosuit developed by SRI International is looking to flip the script. Instead of working to build exoskeletons—which are rigid like their namesake—SRI is using soft robotics to make lightweight, wearable “exomuscles” and “exotendons.”

Instead of a human-shaped heavy metal frame, SRI’s exosuit is soft, pliable, and intelligent. The suit learns and adapts to its wearer’s movements to give them a boost when needed. It’s quick to put on and relatively energy efficient.

Read more

What will we do when money has no meaning? And if everyone gets life extension what will today’s mega rich think and/or do about it?


May you live in interesting times – A curse, origin unknown

One of the ‘curses’ usually attributed to ancient China, but frequently thrown around in today’s society is ‘May you live in interesting times’, suggesting that living in turbulent times, no matter the cause, is somehow a bad thing.

True or not, there is no denying one thing – every individual fragment of time was interesting in its own right, and I’ll be free to say that life has never been as interesting as it is today. Just look at what humans did in the last 40 years – first we got computers, then the internet, mobile phones, smartphones, high-speed internet, high-speed internet on smartphones, social media, virtual reality, augmented reality, drones, exoskeletons, prosthetic mind-controlled limbs… all of these things happened in less than a single lifetime.

Read more

Medical/ Biocomputing will only continue to grow and advance as a result of the demand for more improved experiences by consumers and business in communications and entertainment, food, home life, travel, business, etc.

Today, we have seen early opportunities and benefits with 3D printing, BMI, early stage Gene/ Cell circuitry and computing. In the future, we will see these technologies more and more replaced by even more advance Biocomputing and gene circuitry technology that will ultimately transform the human experiences and quality of life that many like to call Singularity.


Printing technology has come a long way from screechy dot-matrix printers to 3D printers which can print real life objects from metals, plastics, chemicals and concrete. While, at first, 3D printers were being used to create just basic shapes with different materials, more recently, they have been used to create advanced electronics, bio-medical devices and even houses.

Aircraft manufacturer Airbus recently showcased the world’s first 3D-printed mini aircraft, Thor, at the International Aerospace Exhibition and Air Show in Berlin. Although Airbus and its competitor have been using 3D-printed parts for their bigger assemblies, recent attempt shows that aviation may be ready for a new future with much lighter and cheaper planes given 3D printing not only cuts down the costs with less wastage, it also makes the plane lighter, thereby making them faster and more fuel efficient. But planes and toys is not what 3D printing might be restricted to; though in the elementary stage at the moment, the technology is being used for creating complex electronics like phones and wearables and may be able to reduce costs for manufacturers like Samsung and Apple.

One of the most important uses for the technology comes in the field of medical sciences. While pharma companies have been working on producing medicines from 3D printers, with one winning approval from the US’s Food and Drug Administration earlier this year, the technology is also being used to create bones, cartilages and customisable prosthetic limbs. But the real test for the technology lies in bioprinting—creating living cells via a 3D printer. Doctors have been using 3D printed organs to practice on, but scientists at research institutes have been experimenting with printing stem cells, skin tissue, organs and DNA. Though this is still decades from being a reality, printing of regenerative tissues can help cure heart ailments. 3D printing is also helping in construction, with a printer being used to create the first office space in Dubai using concrete blocks. The city aims that 25% of its buildings will be 3D printed by 2030.

Read more

The latest of the bionic leaf. A little over a year ago reseachers made an amazing discovery on cell circuitry leaves. Here is more news from Harvard on their research on bionic leaves.


Harvard scientists designed a new artificial photosynthesis system that turns sunlight into liquid fuel, and it is already effective enough for use in commercial applications.

Here’s an alternative source of energy many have never heard of— bionic leaves.

Scientists from Harvard University just made photosynthesis more efficient with what its creators are calling the “bionic leaf 2.0.” They’ve invented a new system that splits water molecules with solar energy and produces liquid fuels with hydrogen-eating bacteria.

Read more