Toggle light / dark theme

A titanium implant (blue) without a nanofiber coating in the femur of a mouse. Bacteria are shown in red and responding immune cells in yellow. Courtesy of Lloyd Miller/Johns Hopkins Medicine

In a proof-of-concept study with mice, scientists at The Johns Hopkins University show that a novel coating they made with antibiotic-releasing nanofibers has the potential to better prevent at least some serious bacterial infections related to total joint replacement surgery. A report on the study, published online the week of Oct. 24 in Proceedings of the National Academy of Sciences, was conducted on the rodents’ knee joints, but, the researchers say, the technology would have “broad applicability” in the use of orthopedic prostheses, such as hip and knee total joint replacements, as well pacemakers, stents and other implantable medical devices. In contrast to other coatings in development, the researchers report the new material can release multiple antibiotics in a strategically timed way for an optimal effect.

“We can potentially coat any metallic implant that we put into patients, from prosthetic joints, rods, screws and plates to pacemakers, implantable defibrillators and dental hardware,” says co-senior study author Lloyd S. Miller, MD, PhD, an associate professor of dermatology and orthopedic surgery at the Johns Hopkins University School of Medicine.

Read more

Today I’m announcing a $100M commitment to Kernel in an effort to enhance human intelligence and reimagine our future. Unlocking our brain is the most significant and consequential opportunity in history — and it’s time sensitive.

We’re starting to identify the mechanisms underlying neural code and make them programmable. Our biology and genetics have become increasingly programmable; our neural code is next in line. Programming our neural code will enable us to author ourselves and our existence in ways that were previously unimaginable.

I started Kernel in 2016 (read more at the Washington Post) to build the world’s first neural prosthetic for human intelligence enhancement. The investment I’m making in Kernel today will expedite the development of this prosthetic and similarly transformative neurotechnologies.

Read more

Bactéria Cyborg

Pesquisadores do Departamento de Ciência e Engenharia Biosystems (D-BSSE) da ETH Zurich em Basileia criaram um ciborgue — uma criatura híbrida que é máquina e parte organismo vivo.

Bactérias em que o crescimento pode ser totalmente controlado automaticamente por um computador. A interface entre o computador e bactérias é baseada na luz vermelha e verde. A abordagem poderia ajudar a otimizar a produção biotecnológica de moléculas.

Read more

Athletes with disabilities have been competing in a range of challenges that use assistive technology to overcome day-to-day practical challenges.

Bionic arms, powered exoskeletons, brain-controlled computer interfaces and supercharged wheelchairs all featured at the world’s first Cybathlon, near Zurich, Switzerland.

One of the races saw functional electrical stimulation (FES) used to activate the leg muscles of paralysed competitors to ride bikes.

Read more

In Brief:

This newly developed bionic eye sends images directly to the brain to restore a tiny fraction of the pixels a normal eye can produce.

There are about 285 million people in the world who suffer from some type of visual impairment. For many years, researchers have been looking for ways to restore eyesight. This year, Australian volunteers are set to receive bionic eyes which should help restore their vision.

Read more

Neural Nanonics here we come: “Could lead to future autonomous, fully implantable neuroprosthetic devices”


Memristor chip (credit: University of Southampton)

A bio-inspired electronic device called a memristor could allow for real-time processing of neuronal signals (spiking events), new research led by the University of Southampton has demonstrated.

The research could lead to using multi-electrode array implants for detecting spikes in the brain’s electrical signals from more than 1,000 recording channels to help treat neurological conditions, without requiring expensive, high-bandwidth, bulky systems for processing data. The research could lead to future autonomous, fully implantable neuroprosthetic devices.

Schematic illustration of a solid-state titanium-oxide memristive device and atomic force microscopic (AFM) image a portion of a 32 × 32 crossbar array of memristors (credit: Isha Gupta/Nature Communications)

Read more

Circa News, a millennial site, did a story on transhumanism and my campaign. There are 3 videos embedded into this article (a general one on transhumanism, one on using tech to help the environment, and one on a Universal Basic Income):


WATCH | Zoltan Istvan thinks all sentient beings — including, but not limited to humans, artificial intelligence and cyborgs — have the right to be immortal. And that right should be protected under law.

Which is why, naturally, he decided to run for president of the United States.

Read more

As the saying goes, “If you want something done right, you gotta do it yourself,” and it seems that you’ll soon be able to get a lot more done using artificially intelligent, high-tech exoskeleton Kindred. It’s the product of a startup created by quantum computing company D-Wave’s founder Geordie Rose, and according to the venture capital firm funding Kindred, the device “uses AI-driven robotics so that one human worker can do the work of four.”

Based on a patent application, the wearable system is envisioned as a 1.2-meter tall humanoid that may be covered with synthetic skin. It will include a head-mounted display and an exo-suit of sensors and actuators that carries out everyday tasks.

Essentially, it looks something like Spider-Man’s Doctor Octopus on the outside, but on the inside, Kindred utilizes quantum computation, a way of information processing and storage that is much faster and more powerful than that used by conventional computers. Data “learned” by the suit can be taught to other robots, allowing those robots to then perform the tasks autonomously.

Read more