Toggle light / dark theme

A new study makes a compelling case for the development of “NEMO”—a new observatory in Australia that could deliver on some of the most exciting gravitational-wave science next-generation detectors have to offer, but at a fraction of the cost.

The study, co-authored by the ARC Center of Excellence for Gravitational Wave Discovery (OzGrav), coincides with an Astronomy Decadal Plan mid-term review by Australian Academy of Sciences where “NEMO” is identified as a priority goal.

“Gravitational-wave astronomy is reshaping our understanding of the Universe,” said one of the study’s lead authors OzGrav Chief Investigator Paul Lasky, from Monash University.

#CyberneticSingularity


About 542 million years ago, something weird and profoundly remarkable happened on Earth. Quite suddenly, life went insanely inventive, proliferating from simple, rudimentary single-celled organisms into myriad multi-cellular forms. Evolution discovered the idea of more sophisticated and specialized cells, and most of the basic body plans we know today. Biologists call it the Cambrian explosion.

Today, we are on the verge of yet another event of astronomical significance, akin to some kind of Intelligence Supernova, which I refer to as the Cybernetic Singularity, or the Syntellect Emergence. In the scientific community, this upcoming intelligence explosion is also known as the Technological Singularity. Surprisingly enough, most people are still simply oblivious of this rapidly approaching “galactic event” that so many of us are about to witness in our lifetimes.

“A neuron in the human brain can never equate the human mind, but this analogy doesn’t hold true for a digital mind, by virtue of its mathematical structure, it may – through evolutionary progression and provided there are no insurmountable evolvability constraints – transcend to the higher-order Syntellect. A mind is a web of patterns fully integrated as a coherent intelligent system; it is a self-generating, self-reflective, self-governing network of sentient components… that evolves, as a rule, by propagating through dimensionality and ascension to ever-higher hierarchical levels of emergent complexity. In this book, the Syntellect emergence is hypothesized to be the next meta-system transition, developmental stage for the human mind – becoming one global mind – that would constitute the quintessence of the looming Cybernetic Singularity.” –Alex M. Vikoulov, The Syntellect Hypothesis https://www.ecstadelic.net/e_news/gearing-for-the-2020-vision-of-our-cybernetic-future-the-syntellect-hypothesis-expanded-edition-press-release

#SyntellectHypothesis


Ecstadelic Media Group releases the new 2020 expanded edition of The Syntellect Hypothesis: Five Paradigms of the Mind’s Evolution by Alex M. Vikoulov as eBook and Paperback (Press Release, San Francisco, CA, USA, January 15, 2020 10.20 AM PST)

Picture

Named “The Book of the Year” by futurists and academics alike in 2019 and maintaining high rankings in Amazon charts in Cybernetics, Physics of Time, Phenomenology, and Phenomenological Philosophy, it has now been released as The 2020 Expanded New Deluxe Edition (2020e) in eBook and paperback versions. In one volume, the author covers it all: from quantum physics to your experiential reality, from the Big Bang to the Omega Point, from the ‘flow state’ to psychedelics, from ‘Lucy’ to the looming Cybernetic Singularity, from natural algorithms to the operating system of your mind, from geo-engineering to nanotechnology, from anti-aging to immortality technologies, from oligopoly capitalism to Star-Trekonomics, from the Matrix to Universal Mind, from Homo sapiens to Holo syntellectus.

Female #Astrophysicist Helped Build 1st #AtomicBomb

Today marks 75 years since the 1st use of #nuclear weapons in #war-time, when the #US dropped the 1st atomic bomb on #Hiroshima, #Japan. One of the very few female #scientists who worked on the #ManhattanProject went on to become a researcher in high-energy #physics, #astrophysics, #cosmology, & diatomic molecular #spectroscopy.

MORE INFO: CLICK ON #IMAGE OR LINK

LIKE THIS POST? PLEASE SHARE!

Link.


Photograph of Leona Woods Marshall at the University of Chicago on 1946 December 2.

(Image Sources: Wikipedia.org, By Argonne National Laboratory — Leona Woods Marshall Libby, Uranium People, pp. 182-183, Public Domain, https://commons.wikimedia.org/w/index.php?curid=25600002)

In the center of our galaxy, hundreds of stars closely orbit a supermassive black hole. Most of these stars have large enough orbits that their motion is described by Newtonian gravity and Kepler’s laws of motion. But a few orbit so closely that their orbits can only be accurately described by Einstein’s theory of general relativity. The star with the smallest orbit is known as S62. Its closest approach to the black hole has it moving more than 8% of light speed.

Our galaxy’s is known as Sagittarius A* (SgrA*). It is a mass of about 4 million suns, and we know this because of the stars that orbit it. For decades, astronomers have tracked the motion of these stars. By calculating their orbits, we can determine the mass of SgrA*. In recent years, our observations have become so precise that we can measure more than the black hole’s mass. We can test whether our understanding of is accurate.

The most studied star orbiting SgrA* is known as S2. It is a bright, blue giant star that orbits the black hole every 16 years. In 2018, S2 made its closest approach to the black hole, giving us a chance to observe an effect of relativity known as gravitational redshift. If you toss a ball up into the air, it slows down as it rises. If you shine a into the sky, the light doesn’t slow down, but gravity does take away some of its energy. As a result, a beam of light becomes redshifted as it climbs out of a gravitational well. This effect has been observed in the lab, but S2 gave us a chance to see it in the real world. Sure enough, at the , the light of S2 shifted to the red just as predicted.

The end of the universe as we know it will not come with a bang. Most stars will slowly fizzle as their temperatures fade to zero.

“It will be a bit of a sad, lonely, cold place,” said theoretical physicist Matt Caplan, who added no one will be around to witness this long farewell happening in the far far future. Most believe all will be dark as the comes to an end. “It’s known as ‘heat death,’ where the universe will be mostly black holes and burned-out ,” said Caplan, who imagined a slightly different picture when he calculated how some of these might change over the eons.

Punctuating the darkness could be silent fireworks—explosions of the remnants of stars that were never supposed to explode. New theoretical work by Caplan, an assistant professor of physics at Illinois State University, finds that many white dwarfs may explode in in the distant far future, long after everything else in the universe has died and gone quiet.

Observations of dwarf galaxies around the Milky Way have yielded simultaneous constraints on three popular theories of dark matter.

A team of scientists led by cosmologists from the Department of Energy’s SLAC and Fermi national accelerator laboratories has placed some of the tightest constraints yet on the nature of dark matter, drawing on a collection of several dozen small, faint satellite galaxies orbiting the Milky Way to determine what kinds of dark matter could have led to the population of galaxies we see today.

The new study is significant not just for how tightly it can constrain dark matter, but also for what it can constrain, said Risa Wechsler, director of the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) at SLAC and Stanford University. “One of the things that I think is really exciting is that we are actually able to start probing three of the most popular theories of dark matter, all at the same time,” she said.

Hubble Finds That Betelgeuse’s Mysterious Dimming Is Due to a Traumatic Outburst

Observations by NASA ’s Hubble Space Telescope are showing that the unexpected dimming of the supergiant star Betelgeuse was most likely caused by an immense amount of hot material ejected into space, forming a dust cloud that blocked starlight coming from Betelgeuse’s surface.

Hubble researchers suggest that the dust cloud formed when superhot plasma unleashed from an upwelling of a large convection cell on the star’s surface passed through the hot atmosphere to the colder outer layers, where it cooled and formed dust grains. The resulting dust cloud blocked light from about a quarter of the star’s surface, beginning in late 2019. By April 2020, the star returned to normal brightness.

Betelgeuse has been the center of significant media attention lately. The red supergiant is nearing the end of its life, and when a star over 10 times the mass of the Sun dies, it goes out in spectacular fashion. With its brightness recently dipping to the lowest point in the last hundred years, many space enthusiasts are excited that Betelgeuse may soon go supernova, exploding in a dazzling display that could be visible even in daylight.

While the famous star in Orion’s shoulder will likely meet its demise within the next million years — practically couple days in cosmic time — scientists maintain that its dimming is due to the star pulsating. The phenomenon is relatively common among red supergiants, and Betelgeuse has been known for decades to be in this group.

Coincidentally, researchers at UC Santa Barbara have already made predictions about the brightness of the supernova that would result when a pulsating star like Betelgeuse explodes.