Toggle light / dark theme

The sun is losing its spots, and it’s certainly something that we shouldn’t take lightly. According to news.com.au, our fireball has gone blank for the second time this month, leading Meteorologist Paul Dorian to believe that the next solar minimum is approaching and there will be an increasing number of spotless days over the next few years. This matters because the amount of sun spots reportedly affects our climate.

So, let’s start with solar minimum. What is it exactly? Well, NASA explains it to be when the sun’s natural solar cycle shows the lowest amount of sunspots. You see, when at its best, the sun’s surface is covered in visible dark blemishes, or sunspots. The sun goes through a natural solar cycle approximately every 11 years, and each cycle is marked by the increase and decrease of sunspots – with the highest number of sunspots in any given solar cycle being the “solar maximum” and the lowest number being “solar minimum.”

The sun at its best.

Read more

Nation states cause some of our biggest problems, from civil war to climate inaction. Science suggests there are better ways to run a planet.

By Debora MacKenzie

Try, for a moment, to envisage a world without countries. Imagine a map not divided into neat, coloured patches, each with clear borders, governments, laws. Try to describe anything our society does – trade, travel, science, sport, maintaining peace and security – without mentioning countries. Try to describe yourself: you have a right to at least one nationality, and the right to change it, but not the right to have none.

Read more

Sometimes it’s the accidental discoveries that make the biggest impact. Researchers at Pacific Northwest National Laboratory have learned that carbon-rich nanorods created in a botched experiment might be ideal for harvesting water. When there’s relatively low humidity (below 50 percent), the rods trap water inside their gaps; if it’s any more humid, however, they promptly expel that water as vapor. It’s a very unusual trait that’s likely caused by water condensing into a “bridge” in the nanorods, whose surface tension forces them to close and eventually kick the water out.

If scientists can refine the shape of these nanorods and get them to spray water on a consistent basis (only 10 to 20 percent do that right now), the implications are huge. They’d be ideal for harvesting and purifying water in dry climates — you could gather ambient moisture until there’s enough to drink. Alternately, you could use it for anti-sweat clothing that soaks up your perspiration and spits it outside. All told, you’d have direct control over just when and how you get water.

Read more

Some truth to this if the engineering team and designers are not reflective of the broader world population. Good example, is the super race research of the Nazis and attempts to make it happen. Today, AI in the hands of a N. Korea for example could be bad for the world. However, the larger threat that I see with AI is still the hacking of AI, and stolen AI by criminals to use against society.


Sentient machines are a greater threat to human existence than climate change, according to the Oxford philosopher Nick Bostrom.

Read more

The opportunity for intellectual freedom is what drew Anna Ijjas to the Princeton Center for Theoretical Science. As an associate research scholar, Ijjas studies basic questions about the universe’s origin and future. “PCTS provided an environment that encouraged me to question established paradigms and pursue unexplored possibilities,” said Ijjas, who is Princeton’s John A. Wheeler Postdoctoral Fellow in cosmology and astroparticle physics. “Independence and creativity are real values at the center.”

Those values were on display at a conference in May to celebrate the 10th anniversary of the center, which trains early-career researchers and provides a place where theoretical scientists — defined as those who use mathematics to study the natural world — can tackle the biggest questions in science, from the search for dark matter to global climate simulations to theories of quantum gravity.

“The range of topics presented at the PCTS@ten conference demonstrates that we’ve reached the goal we set 10 years ago, which is to develop a new breed of theorists with a much broader view of science than they would normally get from typical postdoctoral training,” said Paul Steinhardt, Princeton’s Albert Einstein Professor in Science and the center’s director since 2007.

Read more

Musk concerns over Singularity/ cyborgs technology.


We are said to be headed towards a wired future. But that could equally be a weird future, going by what some tech entrepreneurs and artificial intelligence visionaries are saying about it. It’s going to get a lot weirder than self-driving smart cars. Elon Musk, who co-founded Paypal and started the Tesla electric car company – and thus has a track record of delivering on ambitious projects – also set up the SpaceX company, whose ultimate goal is to colonise Mars. He’s just announced, at this year’s Code Conference in Los Angeles, plans to send the first manned mission to Mars as early as 2024. Moreover cargo flights to Mars are also planned every two years, keeping in mind that a habitation on Mars will require regular supplies from earth.

Musk says he’s doing this to preserve humanity, since possibilities of a calamitous event that destroys human civilisation on earth – thanks to runaway advances in technology – are high. Perhaps we have a foretaste of this already when the Louvre museum packs up its treasures of human art and locks its doors due to floods in Paris, an event that has been linked to the pumping of greenhouse gases into the air that disrupt the earth’s climate. Amazon CEO Jeff Bezos comes at the same issue from the opposite end. He says heavy industry is too polluting and will need to be relocated to outer space to preserve the earth.

There is also the spectre of singularity, the point at which machines become so intelligent that humans are rendered superfluous. To head this off, according to Musk, we will need to add an artificial intelligence layer to the human brain itself. The future, it appears, is cyborg. We will all be Superman, or bust.

Read more

As a result of deforestation, only 6.2 million square kilometers remain of the original 16 million square kilometers of forest that formerly covered Earth. Apart from adveserly impacting people’s livelihoods, rampant deforestation around the world is threatening a wide range of tree species, including the Brazil nut and the plants that produce cacao and açaí palm; animal species, including critically-endangered monkeys in the remote forests of Vietnam’s Central Highlands, and contributing to climate change instead of mitigating it (15% of all greenhouse gas emissions are the result of deforestation).

While the world’s forest cover is being unabashedly destroyed by industrial agriculture, cattle ranching, illegal logging and infrastructure projects, Thailand has found a unique way to repair its deforested land: by using a farming technique called seed bombing or aerial reforestation, where trees and other crops are planted by being thrown or dropped from an airplane or flying drone.

The tree seed bombing in Thailand is one of the greatest examples of ‘Conscious Entrepreneurs’ or ‘Spiritual Entrepreneurs’ out there right.

Read more

We knew this was going to happen. Just still neat to read about it.


(Phys.org) —NASA is planning to launch a milestone experiment involving growing plants on the moon. The target date is 2015, when the agency will deposit plants on the moon’s surface. The initiative is being driven by the Lunar Plant Growth Habitat team. They intend to use coffee-can sized containers designed to protect the plants against harsh elements of the climate, and will also provide cameras, sensors, and electronics in order to relay information about how the plants fare back to earth. NASA’s plan is “to develop a very simple sealed growth chamber that can support germination over a five to-ten day period in a spacecraft on the Moon.”

What will NASA try to grow? The containers will attempt to grow turnip, basil and Arabidopsis The latter is used often in plant research; Simon Gilroy, University of Wisconsin-Madison botany professor, has referred to the Arabidopsis as “the lab rat of plant biology.” Will the life forms survive the lunar surface? NASA’s plan is to find some answers when this “self-contained habitat,” which will have a mass of about 1 kg and would be a payload on a commercial lunar lander, is on the , How it gets there is another interesting side of the story, because NASA is taking advantage of a parallel event to save costs significantly.

“How can we send plants to the Moon soon? Hitchhiking. Thanks to Google, there are many potential rides to the moon in the near future, with commercial spacecraft companies competing to collect the Google Lunar X-Prize in 2015,” according to NASA. (The prize is in reference to what is called the Google Lunar XPRIZE, an incentive to safely land on the surface of the Moon. In order to win the , a private company must land safely on the surface of the Moon, travel 500 meters above, below, or on the , and send back two mooncasts to Earth, said Google. Teams may also compete for bonus prizes such as exploring lunar artifacts or surviving the lunar night, and can be awarded prize money earlier by completing terrestrial or in-space milestones. Everything needs to be completed, though, by December 31, 2015.)

Read more

Recognizing the importance of biofuels to energy and climate security, the U.S. Department of Energy has announced up to $90 million in project funding focused on designing, constructing and operating integrated biorefinery facilities. The production of biofuels from sustainable, non-food, domestic biomass resources is an important strategy to meet the Administration’s goals to reduce carbon emissions and our dependence on imported oil.

Project Development for Pilot and Demonstration Scale Manufacturing of Biofuels, Bioproducts, and Biopower is a funding opportunity meant to assist in the construction of bioenergy infrastructure to integrate cutting-edge pretreatment, process, and convergence technologies. Biorefineries are modeled after petroleum refineries, but use domestic biomass sources instead of crude oil, or other fossil fuels to produce biofuels, bioproducts, and biopower. They convert biomass feedstocks—the plant and algal materials used to derive fuels like ethanol, butanol, biodiesel and other hydrocarbon fuels—to another form of fuel or energy product. This funding will support efforts to improve and demonstrate processes that break down complex biomass feedstocks and convert them to gasoline, diesel and jet fuel, as well as plastics and chemicals.

“The domestic bio-industry could play an important part in the growing clean energy economy and in reducing American dependence on imported oil,” said Lynn Orr, DOE’s under secretary for science and energy. “This funding opportunity will support companies that are working to advance current technologies and help them overcome existing challenges in bioenergy so the industry can meet its full potential.”

Read more