Toggle light / dark theme

Accurate computational prediction of chemical processes from the quantum mechanical laws that govern them is a tool that can unlock new frontiers in chemistry, improving a wide variety of industries. Unfortunately, the exact solution of quantum chemical equations for all but the smallest systems remains out of reach for modern classical computers, due to the exponential scaling in the number and statistics of quantum variables. However, by using a quantum computer, which by its very nature takes advantage of unique quantum mechanical properties to handle calculations intractable to its classical counterpart, simulations of complex chemical processes can be achieved. While today’s quantum computers are powerful enough for a clear computational advantage at some tasks, it is an open question whether such devices can be used to accelerate our current quantum chemistry simulation techniques.

In “Hartree-Fock on a Superconducting Qubit Quantum Computer”, appearing today in Science, the Google AI Quantum team explores this complex question by performing the largest chemical simulation performed on a quantum computer to date. In our experiment, we used a noise-robust variational quantum eigensolver (VQE) to directly simulate a chemical mechanism via a quantum algorithm. Though the calculation focused on the Hartree-Fock approximation of a real chemical system, it was twice as large as previous chemistry calculations on a quantum computer, and contained ten times as many quantum gate operations. Importantly, we validate that algorithms being developed for currently available quantum computers can achieve the precision required for experimental predictions, revealing pathways towards realistic simulations of quantum chemical systems.

Our kidneys are crucial for keeping us alive and healthy. A sort of chemical computer that keeps our blood chemistry stable—whether we’re eating a sugary birthday cake or a vitamin-filled salad—they prevent waste buildup, stabilize our electrolyte levels, and produce hormones to regulate our blood pressure and make red blood cells.

Kidneys clean our blood using nephrons, which are essentially filters that let fluid and waste products through while blocking blood cells, proteins, and minerals. The latter get reintegrated into the blood, and the former leave the body in urine.

Scientists have struggled to come up with viable treatments for kidney disease and renal failure, and their complexity means kidneys are incredibly hard to synthetically recreate; each kidney contains around one million intricately-structured nephrons.

Basically it behaves like a bioweapon as it has a spread that has encompassed the earth.


US intelligence officials are probing the possibility that America’s enemies might use the coronavirus as a bioweapon, according to an alarming report.

The Department of Defense is monitoring for the potential of the virus to be weaponized, possibly against prominent, high-level targets, three people close to the matter told Politico.

A Pentagon spokesman, Lt. Col. Mike Andrews, declined to comment on whether Department of Defense officials were analyzing COVID-19 weaponization, but said its Chemical and Biological Defense program continues to support federal coronavirus countermeasures such as testing, vaccines and screening machines.

In The Martian, Matt Damon’s character is able to survive being marooned on Mars by growing potatoes in the Martian soil. While fictional, this plot point reflects a real need for in-situ resource utilization (ISRU) to support long-term human space exploration missions. A new study by a team from the Florida Institute of Technology suggests that the Martian soil may be more hostile to plant life than previously thought and that the capability of growing Martian potatoes will require additional development to make agriculture feasible.

The researchers studied three examples of Martian regolith simulants. These simulants are produced from materials found on Earth to reproduce the mineralogy and chemistry of the soil we expect to find on Mars. They found that none of these simulants were able to support plant life on their own, partly due to nitrogen deficiency, and only two were able to do so when nutrient supplements were added. More crucially, none of these simulants could support plant life at all when calcium perchlorate — a common, and toxic, substance on Mars’s surface — was added. Their results suggest that any scheme for ISRU agriculture on the surface of Mars must plan to remediate, or otherwise avoid, the toxic effects of perchlorate before attempting an extraterrestrial harvest.

This is an image of the ultraviolet “nightglow” in the Martian atmosphere over the south pole. Green and white false colors represent the intensity of ultraviolet light, with white being the brightest. The nightglow was measured at about 70 kilometers (approximately 40 miles) altitude by the Imaging UltraViolet Spectrograph instrument on NASA’s MAVEN spacecraft. A simulated view of the Mars globe is added digitally for context, and the faint white area in the center of the image is the polar ice cap. The image shows an unexpectedly bright glowing spiral in Mars’ nightside atmosphere. The cause of the spiral pattern is unknown. Credit: NASA/MAVEN/Goddard Space Flight Center/CU/LASP

Every night on Mars, when the sun sets and temperatures fall to minus 80 degrees Fahrenheit and below, an eerie phenomenon spreads across much of the planet’s sky: a soft glow created by chemical reactions occurring tens of miles above the surface.

An astronaut standing on Mars couldn’t see this “nightglow”—it shows up only as ultraviolet light. But it may one day help scientists to better predict the churn of Mars’ surprisingly complex atmosphere.

We are witnessing the birth of a new faith. It is not a theistic religion. Indeed, unlike Christianity, Judaism, and Islam, it replaces a personal relationship with a transcendent God in the context of a body of believers with a fervent and radically individualistic embrace of naked materialistic personal recreation.

Moreover, in contrast to the orthodox Christian, Judaic, and Islamic certainty that human beings are made up of both material body and immaterial soul – and that both matter – adherents of the new faith understand that we have a body, but what really counts is mind, which is ultimately reducible to mere chemical and electrical exchanges. Indeed, contrary to Christianity’s view of an existing Heaven or, say, Buddhism’s conception of the world as illusion, the new faith insists that the physical is all that has been, is, or ever will be.

Such thinking leads to nihilism. That’s where the new religion leaves past materialistic philosophies behind, by offering adherents hope. Where traditional theism promises personal salvation, the new faith offers the prospect of rescue via radical life-extension attained by technological applications – a postmodern twist, if you will, on faith’s promise of eternal life. This new religion is known as “transhumanism,” and it is all the rage among the Silicon Valley nouveau riche, university philosophers, and among bioethicists and futurists seeking the comforts and benefits of faith without the concomitant responsibilities of following dogma, asking for forgiveness, or atoning for sin – a foreign concept to transhumanists. Truly, transhumanism is a religion for our postmodern times.

How we adapt to aging late in life may be genetically influenced, according to a study led by a psychologist at the University of California, Riverside.

The research, published in Aging Cell, has implications for how relate to aging. Epigenesis is a process in which chemicals attached to DNA control its activity. Epigenetic changes, which can be passed on to offspring, may be critical to accelerated aging as well as declines in cognitive and physical functioning that often accompany aging. Epigenetic modifications resulting in altered may occur due to a number of biological processes, including one the researchers focused on: DNA methylation.

In DNA methylation, groups are added to the DNA molecule. DNA has four different types of nucleotides: A, T, G, and C. DNA methylation occurs at the C bases of eukaryotic DNA. Changes in DNA methylation correlate strongly with aging.

Scientists investigating Alzheimer’s treatments at the Salk Institute have uncovered some key mechanisms that enable an experimental drug to reverse memory loss in mouse models of the disease. The discovery not only bodes well for the possibility of clinical trials, but provides researchers with a new target to consider in the wider development of compounds to counter the degenerative effects of the condition.

The research centers on a drug called CMS121, which is a synthetic version of a chemical called fisetin that occurs naturally in fruits and vegetables. The Salk team’s previous studies concerning CMS121 have produced some very promising results, with one paper published last year describing how the drug influences age-related metabolic pathways in the brain, protecting against the type of degeneration associated with Alzheimer’s. This followed earlier studies demonstrating how fisetin can prevent memory loss in mice engineered to develop Alzheimer’s.

Work continues at Salk to understand how exactly fisetin and the synthetic variant CMS121 produces these anti-aging effects on the brain. In their latest study, the researchers again turned to mice engineered to develop Alzheimer’s, which were administered daily doses of CMS121 from the age of nine months. This is the equivalent to middle age in humans, with the mice already exhibiting learning and memory problems before the treatment began.

Bacteria that can help defuse highly toxic dioxin in sediments in the Passaic River—a Superfund hazardous waste site—could eventually aid cleanup efforts at other dioxin-contaminated sites around the world, according to Rutgers scientists.

Their research, published in the journal Environmental Science & Technology, needs further work to realize the full potential of the beneficial bottom-dwelling microbes.

“The bacteria-driven process we observed greatly decreases the toxicity of ,” said senior author Donna E. Fennell, a professor who chairs the Department of Environmental Sciences in the School of Environmental and Biological Sciences at Rutgers University–New Brunswick.

Circa 2018


Measuring one million times less than the width of a human hair, graphene is harder than diamonds and 200 times stronger than steel. Small, strong, and flexible, it is the most conductive material on earth and has the potential to charge a cell phone in just five seconds or to upload a terabit of data in one. It can be used to filter salt from water, develop bullet-stopping body armor, and create biomicrorobots.

These incredible properties have captured the attention of scientists and industry specialists around the world, all seeking to harness graphene’s potential for applications in electronics, energy, composites and coatings, biomedicine, and other industries.

Derived from graphite, the same graphite used in pencils and many other common use products, graphene is, ironically, one of the most expensive materials on the planet. This is because the process of chemically peeling off, or exfoliating, a single layer of graphene from graphite ore is cost-prohibitive on an industrial scale.