Toggle light / dark theme

I told a few CEOs and Boards a few years ago that Syn-diamonds would be critical to Quantum Computing (processing, storage, networking & communications), energy, etc. Well, more proof in imaging and sensors found in these one time worthless imitations.


With a sensor made from diamond, the new microscope can study biochemical processes in unprecedented detail.

Read more

Harvesting energy from carbon emissions.


Washington: Scientists have developed tiny nano particles that turned carbon dioxide into fuel using light.

Researchers said that carbon dioxide converts into methane, a key building block for many types of fuels, by using only ultraviolet light as an energy source.

After having found a catalyst that can do this important chemistry using ultraviolet light, researchers at Duke University in the US hope to develop a version that would run on natural sunlight, a potential boon to alternative energy.

Read more

With Hanford Site; I would hope and imagine so after all this time.


A Washington State University study of the chemistry of technetium-99 has improved understanding of the challenging nuclear waste and could lead to better cleanup methods.

The work is reported in the journal Inorganic Chemistry. It was led by John McCloy, associate professor in the School of Mechanical and Materials Engineering, and chemistry graduate student Jamie Weaver. Researchers from Pacific Northwest National Laboratory (PNNL), the Office of River Protection and Lawrence Berkeley National Laboratory collaborated.

Technetium-99 is a byproduct of plutonium weapons production and is considered a major U.S. challenge for environmental cleanup. At the Hanford Site nuclear complex in Washington state, there are about 2,000 pounds of the element dispersed within approximately 56 million gallons of in 177 storage tanks.

Read more

Contrary to what has long been believed, the role of the sympathetic nervous system in muscle tissue goes far beyond controlling blood flow by contracting or relaxing blood vessels, according to studies conducted at the University of São Paulo (USP) in Brazil.

With support from FAPESP and the collaboration of researchers at Mannheim University and Heidelberg University in Germany, a group of Brazilian researchers led by Isis do Carmo Kettelhut and Luiz Carlos Carvalho Navegantes at the University of São Paulo’s Ribeirão Preto Medical School (FMRP USP) have demonstrated the importance of sympathetic innervation for the growth and maintenance of muscle mass and also for the control of movement.

Kettelhut is a full professor at FMRP -USP’s Biochemistry & Immunology Department. Navegantes is a professor in the same institution’s Physiology Department.

Read more

Congrats Dr. Happer.


I’ve been waiting to find out who will be Pres. Trump’s science adviser. It appears to be physicist Dr. William Happer, a physicist currently teaching at Princeont University, and former Director of the U.S. Department of Energy’s Office of Science from 1991–1993. He’s no slouch as a scientist. His work for the Air Force on the sodium guidestar laser platform for the military’s missile defense program provided information on the tropopause layer in the upper atmosphere, which is where atmospheric wave fronts distort both starlight and laser emissions, and where heat either begins to leak into space or does not, depending on how much and what kind of gas is blocking heat radiation.

The tropopause is the boundary between the troposphere, where we live and where weather takes place, and the stratosphere. The layers above that are the stratosphere, where stratocirrus clouds form as floating clouds of ice, the mesosphere, the thermosphere and the top, very thin layer, the exosphere. Beyond that is space.

Dr. Happer’s view of the whole climate thing clashes badly with the PC crowd’s notions about it, mostly because during the development of the sodium guidestar, he had to learn the physics and chemistry of the troposphere and the tropopause, and the layers above the troposphere.

Read more

Sharing in case folks would like to listen in.


Microsoft’s Station Q was founded in 2006. The focus of the team has always been topological quantum computing. By taking a full systems architecture approach, we have reached the point where we now able to start engineering a scalable quantum computer. The goal is to be able to solve major problems in areas of interest (e.g., Chemistry, Materials and Machine Learning). This talk will focus on the types of applications that we will be trying to solve as well as the unique approach to quantum computation that we’ve developed. For reference, see:

Current Approach: https://arxiv.org/abs/1610.05289 Chemistry Application: https://arxiv.org/abs/1605.03590 Other papers: https://arxiv.org/find/all/1/all:+wecker_d/0/1/0/all/0/1

Read more

‘Caged’ non-fluorescent carbon dot enters the cancer cell, loses its caging and lights up. Credit: University of Illinois.

Tiny carbon dots have, for the first time, been applied to intracellular imaging and tracking of drug delivery involving various optical and vibrational spectroscopic-based techniques such as fluorescence, Raman, and hyperspectral imaging. Researchers from the University of Illinois at Urbana-Champaign have demonstrated, for the first time, that photo luminescent carbon nanoparticles can exhibit reversible switching of their optical properties in cancer cells.

“One of the major advantages of these agents are their strong intrinsic optical sensitivity without the need for any additional dye/fluorophore and with no photo-bleaching issues associated with it,” explained Dipanjan Pan, an assistant professor of bioengineering and the leader of the study. “Using some elegant nanoscale surface chemistry, we created a molecular ‘masking’ pathway to turn off the fluorescence and then selectively remove the mask leading to regaining the brightness.

Read more

Nice forum on QC Crystal Superconduction in Mar.


From March 8–10, 2017, an International Conference on Crystal Growth is to be held in Freiburg under the auspices of the German Association of Crystal Growth DGKK and the Swiss Society for Crystallography SGK-SSCR. The conference, jointly organized by the Fraunhofer Institute for Solar Energy Systems ISE, the Crystallography department of the Institute of Earth and Environmental Sciences at the University Freiburg and the University of Geneva, is to be held in the seminar rooms of the Chemistry Faculty of the University of Freiburg. Furthermore, the Young DGKK will hold a seminar for young scientists at Fraunhofer ISE on March 7, 2017.

“Whether for mobile communication, computers or LEDs, crystalline materials are key components of our modern lifestyle,” says Dr. Stephan Riepe, group head in the Department of Silicon Materials at Fraunhofer ISE. “Crystal growth has a long tradition and today is still far from becoming obsolete. Materials with special crystalline structure are being developed for applications in high-temperature superconductors through to low-loss power transmission. Artificial diamonds are a favorite choice for building quantum computers. At the conference, the production of silicon, III-V semiconductors and most currently perovskite layers for cost-effective high efficiency tandem solar cells will also be discussed.”

In Freiburg, a close cooperation exists between the Fraunhofer Institutes and the University of Freiburg. For example, at Fraunhofer ISE a doctoral thesis of the University of Freiburg was carried out which investigated how impurities can be minimized during multicrystalline silicon production. In the production process, liquid silicon is melted in a quartz crucible and subsequently solidified. Similar to flour’s function when sprinkled in a baking form, silicon nitride powder acts as a separating agent between the crucible and the silicon. Here the aim is to reduce impurities on the scale of parts per billion, or ppb, to achieve the highest solar cell efficiencies. On a regular basis, student and doctoral degree theses are carried out to address such questions.

Read more

At school you may have been taught that helium was a noble gas because it was totally unreactive.

But, new research suggests it might not be as virtuous as we first thought.

An international team of scientists has created a stable helium compound which is composed of both helium and sodium atoms, and say their discovery marks a ‘new frontier of chemistry.’

Read more