Toggle light / dark theme

No surprise at all. My 13 year old nephew wants to be the next Steve Jobs. Along with learning Quantum & Biology, I will need to suggest that he should focus on China as a possible future.


China’s provincial city of Hangzhou is buzzing with tech activity, with officials aiming to open thousands of tech enterprises by the end of the decade. As Tara Joseph reports, the city is brimming with tech office parks and tech products, though truly innovative concepts are still missing.

They’re calling it Asia’s Silicon Valley In the city of Hangzhou about 100 miles south of Shanghai… you can order your dinner on your phone without a waitress… Or pay for a haircut with a quick swipe. …everyday signs of the start-ups that officials hope can one day drive the economy. (SOUNDBITE) (English) TARA JOSEPH, REUTERS CORRESPONDENT, SAYING: “Here its easy to run into people talking about building a new app — or planning a new tech venture — and every where you go in this city there are new office parks sprouting called tech zones and massive office blocks going up. The scale is absolutely mind boggling.” Hangzhou’s officials have a plan to open a thousand high tech enterprises… employing three HUNDRED thousand people by the end of the decade. It started here with tech giant Alibaba — now a multi-billion dollar company listed in New York led by rock star CEO Jack Ma. In its wake, a new wave of entrepreneurs have emerged — like Li Hongwei.

Read more

IBM wants to give people night vision capabilities, and they are doing it using Google Glass. This patent “tricks” the eyes with red light in order to increase visibility when in a low light environment.

Upon entering a dark room, human eyes obviously take time to adjust in order to see clearly. That’s because there are two types of photoreceptors in our eyes — the rods and the cones. Rods are responsible for letting humans see in the dark; however, it takes around 30 minutes for our rods to fully adjust to the darkness.

Night vision is a very complicated biological process, but it seems that we may be able to tweak and enhance it, and we can do so without using genetic manipulation or any other equally invasive and transformative method. In fact, all we may need is glasses.

Read more

Synthetic biology is essentially an application of engineering principles to the fundamental molecular components of biology. Key to the process is the ability to design genetic circuits that reprogram organisms to do things like produce biofuels or excrete the precursors for pharmaceuticals, though whether this is commercially viable is another question.

MIT’s Jim Collins, one of the founders of synthetic biology, recently explained it to me as putting the engineering into genetic engineering.

“Genetic engineering is introducing a gene from species A to species B,” he said. “That’s the equivalent of replacing a red light bulb with a green light bulb. Synthetic biology is focused on designing the underlying circuitry expressing that red or green light bulb.”

Read more

OAHU, HAWAI’I — As thousands of government representatives and conservationists convene in Oahu this week for the 2016 World Conservation Congress, international conservation and environmental leaders are raising awareness about the potentially dangerous use of gene drives — a controversial new synthetic biology technology intended to deliberately cause targeted species to become extinct.

Members of the International Union for the Conservation of Nature (IUCN), including NGOs, government representatives, and scientific and academic institutions, overwhelmingly voted to adopt a de facto moratorium on supporting or endorsing research into gene drives for conservation or other purposes until the IUCN has fully assessed their impacts. News of the August 26 digital vote comes as an important open letter to the group is being delivered.

Scientists and environmental experts and organizations from around the globe have advocated for a halt to proposals for the use of gene drive technologies in conservation. Announced today, a long list of environmental leaders, including Dr. Jane Goodall, DBE, genetics professor and broadcaster Dr. David Suzuki, Dr. Fritjof Capra, entomologist Dr. Angelika Hilbeck, Indian environmental activist Dr. Vandana Shiva and organic pioneer and biologist Nell Newman, have lent their support to the open letter: “A Call for Conservation with a Conscience: No Place for Gene Drives in Conservation.” The letter states, in part: “Gene drives, which have not been tested for unintended consequences, nor fully evaluated for ethical and social impacts, should not be promoted as conservation tools.”

Read more

By Sveta McShane: Organizations as diverse as the United Nations and Monsanto are in agreement that we need to double our food production globally by 2050 to feed the world’s population…

But our current agricultural process is one of the biggest contributors to global warming. It emits more greenhouses gases than all the world’s cars combined and is a major consumer and polluter of our precious water resources.

Read more

Scientists from the University of Southampton have reengineered the fundamental process of photosynthesis to power useful chemical reactions that could be used to produce biofuels, pharmaceuticals and fine chemicals.

Photosynthesis is the pivotal biological reaction on the planet, providing the food we eat, the oxygen we breathe and removing CO2 from the atmosphere.

Photosynthesis in plants and algae consists of two reactions, the light-reactions absorb light energy from the sun and use this to split water (H2O) into electrons, protons and oxygen and the dark-reactions which use the electrons and protons from the light reactions to ‘fix’ CO2 from the atmosphere into simple sugars that are the basis of the food chain. Importantly, the light reactions have a much higher capacity than the dark reactions resulting in much of the absorbed being wasted as heat rather than being used to ‘fix’ CO2.

Read more

OAHU, HAWAI’I —(ENEWSPF)–September 1, 2016. As thousands of government representatives and conservationists convene in Oahu this week for the 2016 World Conservation Congress, international conservation and environmental leaders are raising awareness about the potentially dangerous use of gene drives — a controversial new synthetic biology technology intended to deliberately cause targeted species to become extinct.

Members of the International Union for the Conservation of Nature (IUCN), including NGOs, government representatives, and scientific and academic institutions, overwhelmingly voted to adopt a de facto moratorium on supporting or endorsing research into gene drives for conservation or other purposes until the IUCN has fully assessed their impacts. News of the August 26 digital vote comes as an important open letter to the group is being delivered.

Scientists and environmental experts and organizations from around the globe have advocated for a halt to proposals for the use of gene drive technologies in conservation. Announced today, a long list of environmental leaders, including Dr. Jane Goodall, DBE, genetics professor and broadcaster Dr. David Suzuki, Dr. Fritjof Capra, entomologist Dr. Angelika Hilbeck, Indian environmental activist Dr. Vandana Shiva and organic pioneer and biologist Nell Newman, have lent their support to the open letter: “A Call for Conservation with a Conscience: No Place for Gene Drives in Conservation.” The letter states, in part: “Gene drives, which have not been tested for unintended consequences, nor fully evaluated for ethical and social impacts, should not be promoted as conservation tools.”

Read more

Nice advancement for the nanomaterials space particularly as we look at ways to improve machines, devices, BMI, living buildings or other living structures, etc. Definitely advances efforts around Singularity.


Proteins perform a myriad of functions essential for life. They also make up important and useful biological materials, for example spider silk, which is exceptionally strong but still flexible.

The ability to design completely new proteins would help scientists create nanomaterials that, like spider silk, have a specific microstructure that confers useful properties.

Read more

Excellent opportunity.


Dolomite microfluidic chips are helping researchers from the Biodesign Institute at Arizona State University (ASU) to develop novel enzymes capable of polymerising synthetic nucleotides.

dolomiteUsing these chips, the team has created a droplet-based optical polymerase sorting (DrOPS) technique allowing rapid screening for novel polymerase activities in uniform water-in-oil microcompartments. The team’s leader, Professor John C. Chaput – formerly at ASU and currently at the University of California, Irvine – explained: “The creation of synthetic nucleic acids is of great interest to synthetic biologists but, because they are not found in nature, wild type polymerases struggle to process them. To overcome this issue, we are developing novel polymerases using directed evolution in water-in-oil microcompartments. The DrOPS methodology has significant advantages over traditional methods, which are both labour intensive and impractical to perform on a large scale due to the amount of precious artificial nucleotide reagents required for screening.”

The Biodesign Institute turned to microfluidics to allow rapid sorting and screening of novel polymerases, taking advantage of the technique’s single-cell encapsulation capabilities and picolitre reaction volumes. Dr Andrew Larsen commented: “We needed very reproducible microfluidics, and so using commercially available chips was preferable. We already had experience with Dolomite’s chips for a variety of applications within the institute, and they have always been very consistent, so the choice was obvious. These chips give us the ability to consistently generate uniform droplets – both single and double emulsion droplets – offering spatial separation between cells and allowing fluorescence-based sorting using conventional FACS technologies. Dolomite has also been very supportive of our efforts, helping to accelerate this area of research.”

Read more

In many parts of the world, the only way to make germy water safe is by boiling, which consumes precious fuel, or by putting it out in the sun in a plastic bottle so ultraviolet rays will kill the microbes. But because UV rays carry only 4 percent of the sun’s total energy, the UV method takes six to 48 hours, limiting the amount of water people can disinfect this way.

Read more