Toggle light / dark theme

Among transhumanists, Nick Bostrom is well-known for promoting the idea of ‘existential risks’, potential harms which, were they come to pass, would annihilate the human condition altogether. Their probability may be relatively small, but the expected magnitude of their effects are so great, so Bostrom claims, that it is rational to devote some significant resources to safeguarding against them. (Indeed, there are now institutes for the study of existential risks on both sides of the Atlantic.) Moreover, because existential risks are intimately tied to the advancement of science and technology, their probability is likely to grow in the coming years.

Contrary to expectations, Bostrom is much less concerned with ecological suicide from humanity’s excessive carbon emissions than with the emergence of a superior brand of artificial intelligence – a ‘superintelligence’. This creature would be a human artefact, or at least descended from one. However, its self-programming capacity would have run amok in positive feedback, resulting in a maniacal, even self-destructive mission to rearrange the world in the image of its objectives. Such a superintelligence may appear to be quite ruthless in its dealings with humans, but that would only reflect the obstacles that we place, perhaps unwittingly, in the way of the realization of its objectives. Thus, this being would not conform to the science fiction stereotype of robots deliberately revolting against creators who are now seen as their inferiors.

I must confess that I find this conceptualisation of ‘existential risk’ rather un-transhumanist in spirit. Bostrom treats risk as a threat rather than as an opportunity. His risk horizon is precautionary rather than proactionary: He focuses on preventing the worst consequences rather than considering the prospects that are opened up by whatever radical changes might be inflicted by the superintelligence. This may be because in Bostrom’s key thought experiment, the superintelligence turns out to be the ultimate paper-clip collecting machine that ends up subsuming the entire planet to its task, destroying humanity along the way, almost as an afterthought.

But is this really a good starting point for thinking about existential risk? Much more likely than total human annihilation is that a substantial portion of humanity – but not everyone – is eliminated. (Certainly this captures the worst case scenarios surrounding climate change.) The Cold War remains the gold standard for this line of thought. In the US, the RAND Corporation’s chief analyst, Herman Kahn — the model for Stanley Kubrick’s Dr Strangelove – routinely, if not casually, tossed off scenarios of how, say, a US-USSR nuclear confrontation would serve to increase the tolerance for human biological diversity, due to the resulting proliferation of genetic mutations. Put in more general terms, a severe social disruption provides a unique opportunity for pursuing ideals that might otherwise be thwarted by a ‘business as usual’ policy orientation.

Here it is worth recalling that the Cold War succeeded on its own terms: None of the worst case scenarios were ever realized, even though many people were mentally prepared to make the most of the projected adversities. This is one way to think about how the internet itself arose, courtesy the US Defense Department’s interest in maintaining scientific communications in the face of attack. In other words, rather than trying to prevent every possible catastrophe, the way to deal with ‘unknown unknowns’ is to imagine that some of them have already come to pass and redesign the world accordingly so that you can carry on regardless. Thus, Herman Kahn’s projection of a thermonuclear future provided grounds in the 1960s for the promotion of, say, racially mixed marriages, disability-friendly environments, and the ‘do more with less’ mentality that came to characterize the ecology movement.

Kahn was a true proactionary thinker. For him, the threat of global nuclear war raised Joseph Schumpeter’s idea of ‘creative destruction’ to a higher plane, inspiring social innovations that would be otherwise difficult to achieve by conventional politics. Historians have long noted that modern warfare has promoted spikes in innovation that in times of peace are then subject to diffusion, as the relevant industries redeploy for civilian purposes. We might think of this tendency, in mechanical terms, as system ‘overdesign’ (i.e. preparing for the worst but benefitting even if the worst doesn’t happen) or, more organically, as a vaccine that converts a potential liability into an actual benefit.

In either case, existential risk is regarded in broadly positive terms, specifically as an unprecedented opportunity to extend the range of human capability, even under radically changed circumstances. This sense of ‘antifragility’, as the great ‘black swan’ detector Nicholas Taleb would put it, is the hallmark of our ‘risk intelligence’, the phrase that the British philosopher Dylan Evans has coined for a demonstrated capacity that people have to make step change improvements in their lives in the face of radical uncertainty. From this standpoint, Bostrom’s superintelligence concept severely underestimates the adaptive capacity of human intelligence.

Perhaps the best way to see just how much Bostrom shortchanges humanity is to note that his crucial thought experiment requires a strong ontological distinction between humans and superintelligent artefacts. Where are the cyborgs in this doomsday scenario? Reading Bostrom reminds me that science fiction did indeed make progress in the twentieth century, from the world of Karl Čapek’s Rossum’s Universal Robots in 1920 to the much subtler blending of human and computer futures in the works of William Gibson and others in more recent times.

Bostrom’s superintelligence scenario began to be handled in more sophisticated fashion after the end of the First World War, popularly under the guise of ‘runaway technology’, a topic that received its canonical formulation in Langdon Winner’s 1977 Autonomous Technology: Technics out of Control, a classic in the field of science and technology of studies. Back then the main problem with superintelligent machines was that they would ‘dehumanize’ us, less because they might dominate us but more because we might become like them – perhaps because we feel that we have invested our best qualities in them, very much like Ludwig Feuerbach’s aetiology of the Judaeo-Christian God. Marxists gave the term ‘alienation’ a popular spin to capture this sentiment in the 1960s.

Nowadays, of course, matters have been complicated by the prospect of human and machine identities merging together. This goes beyond simply implanting silicon chips in one’s brain. Rather, it involves the complex migration and enhancement of human selves in cyberspace. (Sherry Turkle has been the premier ethnographer of this process in children.) That such developments are even possible points to a prospect that Bostrom refuses to consider, namely, that to be ‘human’ is to be only contingently located in the body of Homo sapiens. The name of our species – Homo sapiens – already gives away the game, because our distinguishing feature (so claimed Linnaeus) had nothing to do with our physical morphology but with the character of our minds. And might not such a ‘sapient’ mind better exist somewhere other than in the upright ape from which we have descended?

The prospects for transhumanism hang on the answer to this question. Aubrey de Grey’s indefinite life extension project is about Homo sapiens in its normal biological form. In contrast, Ray Kurzweil’s ‘singularity’ talk of uploading our consciousness into indefinitely powerful computers suggests a complete abandonment of the ordinary human body. The lesson taught by Langdon Winner’s historical account is that our primary existential risk does not come from alien annihilation but from what social psychologists call ‘adaptive preference formation’. In other words, we come to want the sort of world that we think is most likely, simply because that offers us the greatest sense of security. Thus, the history of technology is full of cases in which humans have radically changed their lives to adjust to an innovation whose benefits they reckon outweigh the costs, even when both remain fundamentally incalculable. Success in the face such ‘existential risk’ is then largely a matter of whether people – perhaps of the following generation – have made the value shifts necessary to see the changes as positive overall. But of course, it does not follow that those who fail to survive the transition or have acquired their values before this transition would draw a similar conclusion.

If the controversy over genetically modified organisms (GMOs) tells us something indisputable, it is this: GMO food products from corporations like Monsanto are suspected to endanger health. On the other hand, an individual’s right to genetically modify and even synthesize entire organisms as part of his dietary or medical regimen could someday be a human right.
The suspicion that agri-giant companies do harm by designing crops is legitimate, even if evidence of harmful GMOs is scant to absent. Based on their own priorities and actions, we should have no doubt that self-interested corporations disregard the rights and wellbeing of local producers and consumers. This makes agri-giants producing GMOs harmful and untrustworthy, regardless of whether individual GMO products are actually harmful.
Corporate interference in government of the sort opposed by the Occupy Movement is also connected with the GMO controversy, as the US government is accused of going to great lengths to protect “stakeholders” like Monsanto via the law. This makes the GMO controversy more of a business and political issue rather than a scientific one, as I argued in an essay published at the Institute for Ethics and Emerging Technologies (IEET). Attacks on science and scientists themselves over the GMO controversy are not justified, as the problem lies solely with a tiny handful of businessmen and corrupt politicians.
An emerging area that threatens to become as controversial as GMOs, if the American corporate stranglehold on innovation is allowed to shape its future, is synthetic biology. In his 2014 book, Life at the Speed of Light: From the Double Helix to the Dawn of Digital Life, top synthetic biologist J. Craig Venter offers powerful words supporting a future shaped by ubiquitous synthetic biology in our lives:

“I can imagine designing simple animal forms that provide novel sources of nutrients and pharmaceuticals, customizing human stem cells to regenerate a damaged, old, or sick body. There will also be new ways to enhance the human body as well, such as boosting intelligence, adapting it to new environments such as radiation levels encountered in space, rejuvenating worn-out muscles, and so on”

In his own words, Venter’s vision is no less than “a new phase of evolution” for humanity. It offers what Venter calls the “real prize”: a family of designer bacteria “tailored to deal with pollution or to absorb excess carbon dioxide or even meet future fuel needs”. Greater than this, the existing tools of synthetic biology are transhumanist in nature because they create limitless means for humans to enhance themselves to deal with harsher environments and extend their lifespans.
While there should be little public harm in the eventual ubiquity of the technologies and information required to construct synthetic life, the problems of corporate oligopoly and political lobbying are threatening synthetic biology’s future as much as they threaten other facets of human progress. The best chance for an outcome that will be maximally beneficial for the world relies on synthetic biology taking a radically different direction to GM. That alternative direction, of course, is an open source future for synthetic biology, as called for by Canadian futurist Andrew Hessel and others.
Calling himself a “catalyst for open-source synthetic biology”, Hessel is one of the growing number of experts who reject biotechnology’s excessive use of patents. Nature notes that his Pink Army Cooperative venture relies instead on “freely available software and biological parts that could be combined in innovative ways to create individualized cancer treatments — without the need for massive upfront investments or a thicket of protective patents”.
While offering some support to the necessity of patents, J. Craig Venter more importantly praises the annual International Genetically Engineered Machine (iGEM) competition in his book as a means of encouraging innovation. He specifically names the Registry of Standard Biological Parts, an open source library from which to obtain BioBricks, and describes this as instrumental for synthetic biology innovation. Likened to bricks of Lego that can be snapped together with ease by the builder, BioBricks are prepared standard pieces of genetic code, with which living cells can be newly equipped and operated as microscopic chemical factories. This has enabled students and small companies to reprogram life itself, taking part in new discoveries and innovations that would have otherwise been impossible without the direct supervision of the world’s best-trained teams of biologists.
There is a similar movement towards popular synthetic biology by the name of biohacking, promoted by such experts as Ellen Jorgensen. This compellingly matches the calls for greater autonomy for individuals and small companies in medicine and human enhancement. Unfortunately, despite their potential to greatly empower consumers and farmers, such developments have not yet found resonance with anti-GMO campaigners, whose outright rejection of biotechnology has been described as anti-science and “bio-luddite” by techno-progressives. It is for this reason that emphasizing the excellent potential of biotechnology for feeding and fuelling a world plagued by dwindling resources is important, and a focus on the ills of big business rather than imagined spectres emerging from science itself is vital.
The concerns of anti-GMO activists would be addressed better by offering support to an alternative in the form of “do-it-yourself” biotechnology, rather than rejecting sciences and industries that are already destined to be a fundamental part of humanity’s future. What needs to be made is a case for popular technology, in hope that we can reject the portrayal of all advanced technology as an ally of powerful states and corporations and instead unlock its future as a means of liberation from global exploitation and scarcity.
While there are strong arguments that current leading biotechnology companies feel more secure and perform better when they retain rigidly enforced intellectual property rights, Andrew Hessel rightly points out that the open source future is less about economic facts and figures than about culture. The truth is that there is a massive cultural transition taking place. We can see a growing hostility to patents, and an increasing popular enthusiasm for open source innovation, most promisingly among today’s internet-borne youth.
In describing a cultural transition, Hessel is acknowledging the importance of the emerging body of transnational youth whose only ideology is the claim that information wants to be free, and we find the same culture reflected in the values of organizations like WikiLeaks. Affecting every facet of science and technology, the elite of today’s youth are crying out for a more open, democratic, transparent and consumer-led future at every level.

By Harry J. Bentham - More articles by Harry J. Bentham

Originally published at h+ Magazine on 21 August 2014

. @IEET. @HJBentham. @ClubOfINFO. #nature. #philosophy. #ebook.

There is often imagined to be a struggle between humans and nature. How does this struggle originate, and what is its resolution? Such a question is central to some religious traditions, and has much room to be explored in literature.
Nature is used to describe everything that lies outside of human agency. Disasters and disease often fall under this description, although there is usually some element of human blame in such problems. Some people try to live or eat according to preferences that they call “natural”. In my view, this is a fallacy. When we use the word natural with its only workable definition, to represent something distinct from human agency, it means that anything resulting from human agency is unnatural and so it cannot be natural (even if it imitates nature). When it applies to human choices, natural is only an arbitrary label used by people to refer to anything they approve of.
Why would humans battle against nature? Perhaps suffering can be described as the most imposing and constantly surfacing part of nature in our lives, because it is ultimately caused by the laws of biology rather than human wills. We humans have vulnerable bodies and we rely on vulnerable, easily destroyed brains to exist, although it is very apparent that we would prefer not to be exposed in this way. Because this is so, the struggle to overcome humanity’s physical and medical vulnerabilities can be depicted as a battle against natureour nature.
The assertion that seeking invulnerability against suffering is an escape from cruel inevitabilities biology is certainly reflected in some philosophers, such as Friedrich Nietzsche. Despite seeing the transformation of humanity into a higher creature as a noble task, Nietzsche saw this as necessarily involving suffering. As for the desire to end suffering, he deplored this as a product of weakness and the inability to accept the forces outside human control.
Nietzsche addressed the way in which religious traditions give moral assurances against suffering. Religions offer promises of justice that run contrary to the natural order in which the strong are favored over the weak. The Christian doctrines of the fall of man and eternal Heaven are alike in their view that the world we know is flawed and polluted, and humans are instead meant to endure in paradise. Such myths have been easy for people to buy into, because it is often easier to tolerate suffering in the world and move on if one believes in a supernatural alternativea cosmic safety net for the weak and the deadafter it.
The other manifestation of our weak human refusal to accept suffering, but which actually works, is the desire to use science and technology to thwart suffering. Once we remove the supernatural, the only remaining assurances against suffering can necessarily come from the modernity of technology. In this sense, the idea of a technological singularity, after which the very best technology permitted by the laws of physics will get within reach, represents the only “true” paradise that could ever be inherited.
But what if a paradise, an all-encompassing solution to suffering, is impossible? A universe with high suffering is inherently more likely than a universe without it, because the “anthropic principle” does not contain any guarantees against mortality and suffering. The anthropic principle says human life exists only because this is a requisite for us to notice our own existence. Therefore, the anthropic principle leads to a universe that merely tolerates conscious life for a limited time, rather than enriches it or sustains it. Contrary to religious claims, the universe in which we reside is not “designed” for us to inhabit, and we know this because it is mostly uninhabitable. The vacuum of space cannot be inhabited, and most locations in the universe have the wrong temperature or lack the elements needed for life to exist. What is conspicuous is that the universal constants allow us to exist, not in any kind of ideal state but just enough.
One can relate “extropy” (Kevin Kelly’s usage of the term) to the anthropic principle. Where the anthropic principle explains the human-friendly properties of the universe as existing simply because a human observer exists, extropy the guarantee of something even more complex and intelligent in the future. More than simply tolerating human life, then, a universe where humans exist includes the inevitability that human intelligence will evolve into or produce something far more enduring and glorious. After all, we are no pinnacle, and we are still witnessing an ongoing explosion of intelligence through such creations as the internet and the race to develop powerful AI.
Take a look at history and current cosmology, and we will see that extropy looks very valid. Humans have undeniably been improving their existence, and this is arguably due to the universe being filled with resources that are very friendly to our needs. There are seemingly infinite resources and tools in the universe for humans to exploit to improve their civilization, and the anthropic principle alone did not necessary contain any guarantee that such useful “equipment” would exist. Conceivably, there could be worlds where intelligent life exists but there can be no fire. There might also have been no sufficient quantities of ores or effective tools to build an advanced civilization. Certainly, humans have a lot more at their fingertips than the minimal equipment promised to them by the anthropic principle. Although there is not necessarily a God to thank for it, there is a lot to be thankful for.
What if there was a world where conditions were less favorable? Perhaps, if humans were too vulnerable, there would be less potential to develop civilization, and instead all thought would be dedicated to staying alive. A work of fiction I have dedicated to exploring this theme, The Traveller and Pandemonium, takes place in a more hostile universe than ours (as permitted in the “many-worlds hypothesis”), where a traveler is not convinced by the idea that humanity could have arisen in such unfavorable conditions. Determining that humanity belongs in another world, he searches vainly for the solution.
The traveler keeps his quest secret, aware that most people will condemn him as a religious nut searching for Heaven if he talks about it, but there is actually a rational basis for his view that humans belong elsewhere. The world in which he resides is genuinely toxic and inhospitable to humanity, humans are vulnerable to every creature in the world around them, and they are rapidly going extinct. It looks like a human colonization gone awry on a hostile alien world, although no-one knows how it got that way.
The two strategies against suffering in the world can be described as surgical and spiritual. Those who advocate “spiritual” solutions are only offering window-dressing to humanity while they greedily seek power. Those who advocate “surgical” solutions might not seem beautiful or perfect in what they promise, but they are the only ones promising something real, offering something tangible that could really fight away the uglier characteristics of the universe and save what can be saved.

By Harry J. Bentham - More articles by Harry J. Bentham

Originally published at the Institute for Ethics and Emerging Technologies on 17 July 2014

Written By: — Singularity Hub
http://cdn.singularityhub.com/wp-content/uploads/2014/07/universe-comes-to-know-itself-1.jpg
In his latest video, host of National Geographic’s Brain Games and techno-poet, Jason Silva, explores the universe’s tendency to self-organize. Biology, he says, seems to have agency and directionality toward greater complexity, and humans are the peak.

“It’s like human beings seem to be the cutting edge,” Silva says. “The evolutionary pinnacle of self-awareness becoming aware of its becoming.”

Read more

— Singularity Hub
AI, neuroscience, technology,
It turns out that an apple a day — or at least an apple spinach salad — does keep the doctor away. But it’s not true that when brain cells die we can’t make more. When and how remain active questions, however, so there’s no free pass to collectively disregard our mothers’ safety tips just yet.

Researchers at Duke University have shed some light on the subject with findings that suggest that down the line doctors may be able spur the brain to repair itself.

Read More

Oil and Gas Tankers (maritime vessels) that has continuously benefited from Mr. Andres Agostini’s White Swan Transformative and Integrative Risk Management. The White Swan Idea is at https://lifeboat.com/blog/2014/04/white-swan

Through five and half years, the White Swan Book Author Andres Agostini concurrently managed the risks of ten (10) oil and gas tankers (maritime vessels). There is a sample of five (5) vessels here.

038

039

040

041

042

The White Swan Idea is at https://lifeboat.com/blog/2014/04/white-swan

The Lifeboat Foundation Worldwide Ambassador Mr. Andres Agostini’s own White Swan Dictionary, Countermeassuring Every Unthinkable Black Swan, at https://lifeboat.com/blog/2014/04/white-swan

035

WHITE SWAN — UNABRIDGED DICTIONARY

Altogetherness.— Altogetherness is the quality of conforming to the ability to investigate with all or everything included.

A Posteriori.— “ … A Posteriori indicates the demonstration that entails the ascendance of the effect to the cause, or the properties of the essence of something [….] After examining the matter that is dealt with [….] Derived by or designating the process of reasoning from facts or particulars to general principles or from effects to causes; inductive; empirical [….] Knowable from experience [….] relating to or involving inductive reasoning from particular facts or effects to a general principle [….] derived from or requiring evidence for its validation or support; empirical; open to revision [….] from particular instances to a general principle or law; based on observation or experiment [….] not existing in the mind prior to or apart from experience [….] the process of reasoning from effect to cause, based upon observation …”

A Priori.— “ … A Priori comprises that proceeds from a known or assumed cause to a necessarily related effect; deductive [….] Derived by or designating the process of reasoning without reference to particular facts or experience [….] Knowable without appeal to particular experience [….] Made before or without examination; not supported by factual study [….] relating to or involving deductive reasoning from a general principle to the expected facts or effects [….] to be true independently of or in advance of experience of the subject matter; requiring no evidence for its validation or support [….] existing in the mind independent of experience [….] conceived beforehand …”

Blitzkrieg.— “ … Blitzkrieg is a German MEME for war-waging White Swan Corporate Strategy conducted against competitors and with great speed and force; specifically: a violent techno-surprise offensive by massed brick-and-mortar forces and through digitized ground and World-Wide Web forces in close beyond-perfection coordination …”

Change .— “… Change is to transfer from (one conveyance) to another and/or to undergo transformation or transition and/or to go from one phase to another and/or the act, process, or result of altering or modifying and/or the replacing of one thing for another; substitution and/or a transformation or transition from one state, condition, or phase to another and/or to make or become different and/or a variation, deviation, or modification and/or anything that is or may be substituted for something else and/or to transform and/or to transfer from one (conveyance) to another and/or to pass gradually into and/or to pass from one phase to another and/or the act of changing or the result of being changed and/or a transformation or modification and/or the substitution of one thing for another and/or the process of becoming different and/or impermanence and/or biological metamorphosis …”

Closenessfulness.— (Closenessfulness is the quality of conforming to the ability to see immediate and near-term foreseeable futures and likely prospects).

Complexity Science .— “ … Complexity Science is the systematic study of the nature and behavior of the material and physical universe, based on observation, experiment, and measurement, and the formulation of laws to describe these facts in general terms with the utter purpose of instituting the perusal of the phenomena which emerge from a collection of interacting objects [….] Complexity expresses a condition of numerous elements in a system and numerous forms of relationships among the elements [….] The use of the term complex is often confused with the term complicated. In today’s systems, this is the difference between myriad connecting ‘stovepipes’ and effective ‘integrated’ solutions. This means that complex is the opposite of independent, while complicated is the opposite of simple [….] While this has led some fields to come up with specific definitions of complexity, there is a more recent movement to regroup observations from different fields to study complexity in itself, whether it appears in anthills, human brains, or stock markets. One such interdisciplinary group of fields is relational order theories …”

Counter-closenessfulness.— (Counter-closenessfulness is the quality of conforming to the ability to see alternate immediate and near-term foreseeable futures and likely prospects).

Counter-DoctorStangelovesness.— (Counter-DoctorStangelovesness is the quality of conforming to the ability to investigate, through alternate military strategy and practical systems theory as they are instituted in corporate theater of operations, as claims of management phenomena with potential corporate for-lucre application, such as ‘remote viewing’ through scenario-planning methodology ‘unthinkables’, the purported ability to physically ‘see’ unknown events, sites, or information from a great temporal distance, including those of the environment, industries and specially those of direct and indirect competitors to said corporations. Taken by Applied Thinkers and Savvy Corporation by and beyond the prescription of the RAND Corporation and the Hudson Institute).

Counter-farsightfulness.— (Counter-farsightfulness is the quality of conforming to the ability to see alternate foreseeable futures and likely prospects).

Counter-foresightfulness.— (Counter-foresightfulness is the quality of conforming to the alternate perception of the significance and nature of events before they have occurred).

Counter-hindsightfulness.— (Counter-hindsightfulness is the quality of conforming to an alternate perception of the significance and nature of events after they have occurred).

Counter-insightfulness.— (Counter-insightfulness is the quality of conforming to the ability to engage the alternate acute observation and deduction, penetration, discernment, perception and understanding of a specific cause and effect in a specific context).

Counter-intuitvenessfulness.— (Counter-intuitvenessfulness is the quality of conforming to the ability to perceiving alternate intuitive knowledge).

Counter-Stargatenessfulness.— (Counter-Stargatenessfulness is the quality of conforming to the ability to investigate alternate claims of psychic phenomena with potential corporate for-lucre application, such as ‘remote viewing’, the purported ability to psychically ‘see’ events, sites, or information from a great distance, including those of the environment, industries and specially those of direct and indirect competitors. Taken by Applied Thinkers and Visionary Corporation by the U.S. Federal Government’ and the U.S. Defense Intelligence Agency’s Stargate Project).

DoctorStangelovesness.— (DoctorStangelovesness is the quality of conforming to the ability to investigate, through military strategy and practical systems theory as they are instituted in corporate theater of operations, as claims of management phenomena with potential corporate for-lucre application, such as ‘remote viewing’ through scenario-planning methodology ‘unthinkables’, the purported ability to physically ‘see’ unknown events, sites, or information from a great temporal distance, including those of the environment, industries and specially those of direct and indirect competitors to said corporations. Taken by Applied Thinkers and Savvy Corporation by and beyond the prescription of the RAND Corporation and the Hudson Institute).

Dynamic Driving Forces .— “…Dynamic Driving Forces are forces outside the firm (external factors) that trigger the change of strategy in an organization. Industry conditions change because important forces (the most dominant ones that have the biggest influence on what kinds of changes will take place in the industry’s structure and competitive environment) are driving industry participants (competitors, customers, or suppliers) to alter their actions, and thus the driving forces in an industry are the major underlying causes of changing industry and competitive conditions. Driving forces analysis has two steps: identifying what the driving forces are and assessing the impact they will have on the industry .… The Most Common Dynamic Driving Forces include: 1. The Internet and new e-commerce opportunities and threats it breeds in the industry; 2. Increasing globalization of the industry; 3. Changes in the long-run industry growth rate; 4. Changes in who buys the products and how they use it. 5. Product innovation; 6. Technological change; 7. Market innovation; 8. Entry or exit of major firms; 9. Diffusion of technical know-how across more companies and more countries; 10. Changes in cost and efficiency. 11. Growing buyer for preferences for differentiated products instead of a commodity product (or for a more standardized product instead of strongly differentiated products); 12. Regulatory influences and government policy changes; 13. Changing societal concerns, attitudes, and lifestyles; 14. Reductions in uncertainty and business risk … Other dynamic driving forces include geologic, climatological, political, geopolitical, demographic, social, ethical, economic, technological, financial, legal and environmental forces, among others …”

Dynamics.— “…Dynamics is a branch of mechanics that deals with forces and their relation primarily to the motion but sometimes also to the equilibrium of bodies …. an underlying cause of change or growth …. a pattern or process of change, growth, or activity *population dynamics* …”

Far-fetched.— “ … Far-fetched is improbable in nature; unlikely. But given the emergent as-of-now nature of the Omniverse, far-fetched is omniverseral nature’s most probable and so probable to tectonically reform our cosmovisions, in front and beyond our smartest observations, and other constellations believed indisputable by our folly human assumptions …”

Farsightfulness.— (Farsightfulness is the quality of conforming to the ability to see the foreseeable futures and likely prospects).

Flawness.— (Flawness is the quality of conforming to maximum error and failure).

Foresightfulness.— (Foresightfulness is the quality of conforming to perception of the significance and nature of events before they have occurred).

Fortuitousness.— (Unexpected and casually happening[s], as a result of corporate manager’s perpetual MOST-RECURSIVE search for lucrative intangibles in omniverseral: (a) hidden quadrants and (b) ignored flanks and © forgotten angles, and (d) recondite spheres and (e) hermetic theater of operations and (e) unrealized orbits.

Futilitifulness Thinking.— (Futilitifulness is the quality of conforming to maximum futility).

Future (the ‚) .— “ … The Future is 1) What is yet to come, 2) What can happen or not, 3) The future is a tranquil country, 4) The indefinite time yet to come, 5) Something that will happen in time to come, 6) A prospective or expected condition, 7) Undetermined events that will occur in that time, 8) time that is to be or come hereafter, 9) Something that will exist or happen in time to come, 9) The period of time following the present moment and continuing on indefinitely, 10) The situation or condition of someone or something in the future, 11) One of a plurality of possible future conditions or situations, 12) The time or a period of time following the moment of speaking or writing; time regarded as still to come, 13) The future is what will happen in the time period after the present. Its arrival is considered inevitable due to the existence of time and the laws of physics. Due to the apparent nature of reality and the inevitability of the future, everything that currently exists and will exist can be categorized as either permanent, meaning that it will exist for the whole of the future, or temporary, meaning that it won’t and thus will come to an end. The future and the concept of eternity have been major subjects of philosophy, religion, and science, and defining them non-controversially has consistently eluded the greatest of minds. In the Occidental view, which uses a linear conception of time, the future is the portion of the projected time line that is anticipated to occur. In special relativity, the future is considered absolute future, or the future light cone. 14) The only way you can see the future is if you’re ahead of your own time, 15) Learning how to be ahead of your time, today!, 16) The future is that the future is something that happens to us, not something we create, 17) Our future is determined by the actions of all of us alive today. our choices determine our destiny, 18) The future is a phenomenon that will be completely real someday even though it does not exist today, 19) Future is too important to be lost under the burden of juvenile folly and ignorant superstition, 20) Our intuition about the future is linear, which is hard-wired in our brains, 21) The future is being colonized all the time by people who have the resources, who do spend time thinking about it, planning for it and trying to shape it in their direction, 22) The future is already here; it’s just not evenly distributed, 23) the future is called ‘perhaps,’ which is the only possible thing to call the future. and the important thing is not to allow that to scare you, 24) The future is unsure. that’s the way it should be, 25) The past cannot be changed. The future is yet in your power, 26) The future is the past of to-morrow, 27) The best way to predict the future is to invent it, 28) To be masters of the future is to change the past, 29) The future is extremely important to high morale, to dynamism, to consensus, and in general to help the wheels of society turn smoothly, 30) The past is gone, the future is not to come, and the present becomes the past even while we attempt to define it, 31) The future is not for the fainthearted, 32) The future is not an echo of the past, 33) The future is not a privilege but a perpetual conquest, 34) The future is not what will happen; the future is what is happening, 35) The future is more challenging than playing catch up, 36) The future is not an extrapolation of the past, 37) The future is not something we enter. The future is something we create, 38) The future is an unknown country which requires tough visas for anyone to enter. not all of us will get the chance to visit it, 39) The future is not what is coming at us, but what we are headed for, 40) The future is where I expect to spend the rest of my life, 41) The danger of the future is that men may become robots, 42) The future is the creation of millions of independent economic actors, 43) The future is independent of the past, 44) The future is alive. Like the present, the future is not a single, uniform state but an ongoing process that reflects the plenitude of human life, 45) The future is natural, out of anyone’s control, 46) The future is continually stalking on the present, 47) The future is technocracy in perpetuity, 48) The future is eternally clashing the present, 49) The future is absolute hard science dominance, 50) The future is going to get invented, with you or without you, 51) The future is S-H-A-Z-A-M (“…The wisdom of Solomon, the stamina of Atlas, the power of Zeus, the courage of Achilles, and the speed of Mercury.…” and 52) The future is not something that happens to us, but something we create.

Fuzzy Logic.— (A form of algebra employing a range of values from “true” to “false” that is used in decision-making with imprecise data, as in artificial intelligence systems, as a result of corporate manager’s perpetual MOST-RECURSIVE search for lucrative intangibles in omniverseral: (a) hidden quadrants and (b) ignored flanks and © forgotten angles, and (d) recondite spheres and (e) hermetic theater of operations and (e) unrealized orbits.

Haphazardness.— (the quality of lacking any predictable order or plan, as a result of corporate manager’s perpetual MOST-RECURSIVE search for lucrative intangibles in omniverseral: (a) hidden quadrants and (b) ignored flanks and © forgotten angles, and (d) recondite spheres and (e) hermetic theater of operations and (e) unrealized orbits.

Hindsightfulness.— (Hindsightfulness is the quality of conforming to perception of the significance and nature of events after they have occurred).

Inflection point .— “…Inflection point is a moment of dramatic change, especially in the development of a company, industry, or market … And/or a time of significant change in a situation; a turning point … A moment of dramatic change, especially in the development of a company, industry, or market … A point on a chart that marks the beginning of a significant move, either up or down … An event that results in a significant change in the progress of a company, industry, sector, economy or geopolitical situation. An inflection point can be considered a turning point after which a dramatic change, with either positive or negative results, is expected to result. Companies, industries, sectors and economies are dynamic and constantly evolving. Inflection points are more significant than the small day-to-day progress that is made and the effects of the change are often well-known and widespread … Andy Grove, Intel’s co-founder, described a strategic inflection point as ‘…an event that changes the way we think and act …’ … What Intel’s Grove calls ‘…strategic inflection point …, Andres terms « … Sputnik Moment inflection point … » … Inflection points can be a result of action taken by a company, or through actions taken by another entity, that has a direct impact on the company. Regulatory changes, for instance, could lead to an inflection point for a corporation that was previously held back by regulatory compliance issues. Inflection points in technology include the advent of the Internet and smart phones. Politically, an inflection point can be illustrated by the fall of the Berlin Wall or the fall of Communism in Poland and other Eastern Bloc countries …”

Insightfulness.— (Insightfulness is the quality of conforming to the ability to engage the acute observation and deduction, penetration, discernment, perception and understanding of a specific cause and effect in a specific context).

Intuitvenessfulness.— (Intuitvenessfulness is the quality of conforming to the ability to perceiving intuitive knowledge).

Litmus Test.— “… Litmus Test is a critical indication of future success or failure …”

Minimax.— “… Minimax is a decision rule used in decision theory, game theory, statistics and philosophy for minimizing the possible loss for a worst case (maximum loss) scenario. Alternatively, it can be thought of as maximizing the minimum gain (maximin or MaxMin). Originally formulated for two-player zero-sum game theory, covering both the cases where players take alternate moves and those where they make simultaneous moves, it has also been extended to more complex games and to general decision making in the presence of uncertainty …. In the theory of simultaneous games, a minimax strategy is a mixed strategy which is part of the solution to a zero-sum game. In zero-sum games, the minimax solution is the same as the Nash equilibrium …”

Mishaps.— (an unknown and unpredictable phenomenon that causes an event to result one way rather than another, as a result of corporate manager’s perpetual MOST-RECURSIVE search for lucrative intangibles in omniverseral: (a) hidden quadrants and (b) ignored flanks and © forgotten angles, and (d) recondite spheres and (e) hermetic theater of operations and (e) unrealized orbits.

Mistakenness .— (Mistakenness is the quality of conforming to maximum mistake and an unintentional act, omission).

Narrow-mindedness.— (Narrow-mindedness is the quality of conforming to unresponsive to new ideas).

Normalness.— (Normalness is the quality of conforming to maximum normal quality or normal condition).

Omniscience .— “… Applied non-theological omniscience consists of having total knowledge; knowing everything, having infinite knowledge, the current state of knowledge, the ability to know anything that one chooses to know and can be known and actually knowing everything that can be known. Synonyms to omniscience include panshopy, polyhistory and all-knowingness.…”

Open-mindedness.— (Open-mindedness is the quality of conforming to receptiveness to new ideas).

Prospective.— “ … Prospective comprises something that is likely or expected to happen [….] that looks forward to the future [….] that it is anticipated or likely to happen [….] of or in the future [….] potential, likely, or expected [….] yet to be or coming [….] of or concerned with or related to the future Set of analyzes and studies developed with the utter end of exploring or foretelling the future, regarding a determined subject matter …”.

Pseudo-fortuitousness.— (quasi-unexpected and quasi-casually happening[s], as a result of corporate manager’s perpetual MOST-RECURSIVE search for lucrative intangibles in omniverseral: (a) hidden quadrants and (b) ignored flanks and © forgotten angles, and (d) recondite spheres and (e) hermetic theater of operations and (e) unrealized orbits.

Pseudo-Fuzzy Logic.— (A form of algebra employing a range of values from quasi-“true” to quasi-“false” that is used in decision-making with quasi-imprecise data, as in artificial intelligence systems, as a result of corporate manager’s perpetual MOST-RECURSIVE search for lucrative intangibles in omniverseral: (a) hidden quadrants and (b) ignored flanks and © forgotten angles, and (d) recondite spheres and (e) hermetic theater of operations and (e) unrealized orbits.

Pseudo-Haphazardness.— (the quality of quasi-lacking any predictable order or plan, as a result of corporate manager’s perpetual MOST-RECURSIVE search for lucrative intangibles in omniverseral: (a) hidden quadrants and (b) ignored flanks and © forgotten angles, and (d) recondite spheres and (e) hermetic theater of operations and (e) unrealized orbits.

Pseudo-Mishaps.— (a quasi-unknown and quasi-unpredictable phenomenon that causes an event to result one way rather than another, as a result of corporate manager’s perpetual MOST-RECURSIVE search for lucrative intangibles in omniverseral: (a) hidden quadrants and (b) ignored flanks and © forgotten angles, and (d) recondite spheres and (e) hermetic theater of operations and (e) unrealized orbits.

Pseudoserendipity.— Pseudoserendipity means PURPOSEFULLY CREATING the constant preconditions and conditions to seize “fortuitous happenstance” and/or “pleasant surprise” and/or “always making discoveries, by accidents and sagacity, of things which they were not in quest of”. And also entails unexpected positive and beneficial accident(s) [….] the art of finding something unintended [….] the common experience of observing unexpected, anomalous and strategic data and events, which are transformed into the instance and context to develop a new theory or to complement an existing theory [….] And the faculty of making fortunate Technological Breakthroughs and Scientific Discoveries And Innovation Developments by accident, as a result of corporate manager’s perpetual MOST-RECURSIVE search for lucrative intangibles and tangibles in omniverseral: (a) hidden quadrants and (b) ignored flanks and © forgotten angles, and (d) recondite spheres and (e) hermetic theater of operations and (e) unrealized orbits and planes [….] Somewhat Expected Accidental Beneficial Discoveries in Science, Technology, Strategy, Business and Management …”

Pseudo-Randomness.— (Pseudo-Randomness means quasi-lacking of pattern or quasi-predictability in events. Pseudo-Randomness suggests a quasi-non-order or quasi-non-coherence in a sequence of symbols or steps, such that there is no intelligible pattern or combination, as a result of corporate manager’s perpetual MOST-RECURSIVE search for lucrative intangibles in omniverseral: (a) hidden quadrants and (b) ignored flanks and © forgotten angles, and (d) recondite spheres and (e) hermetic theater of operations and (e) unrealized orbits.

Pseudo-recusriveness.— (quasi-pertaining to or using a rule or procedure that can be applied repeatedly, as a result of corporate manager’s perpetual MOST-RECURSIVE search for lucrative intangibles in omniverseral: (a) hidden quadrants and (b) ignored flanks and © forgotten angles, and (d) recondite spheres and (e) hermetic theater of operations and (e) unrealized orbits.

Qualitative Analysis.— “…Qualitative Analysis refers to the skills, technologies, applications and practices for continuous iterative exploration and investigation of past business performance to gain insight and drive business, risk and futures planning. Qualitative Analysis focuses on developing new insights and understanding of sustainable business performance based on narrative data …”

Qualt.— “…A qualt is brand of systems engineering who applies mathematical and ESPECIALLY non-mathematical models of uncertainty to financial and ESPECIALLY non-financial data and complex industrial operations. And a person who also studies the errors, the flaws and the limits of these qualitative models, understanding that there is a point of (i) inflection and (ii) Event horizon, in anything pursued by the for-lucre corporations …. A qualt has a combined background of advanced management, extreme project management (Agile) and systems engineering. A qualt spreads the usage of most-advanced business analytics and transformative and integrative risk management …. Whether he or she acknowledges it or not, the qualt is extremely AWARE of the many critical short-comings of many quantitative strategies and works hard at it advance to eliminate every form of downside through qualitative strategies …. For instance, qualts know that “…systemic risks …” are direct brainchildren of (a) Ignorance, (b) Manipulation, © Greed and (d) Corruption [….] Systems engineering, hugely embraced by Qualts, is an interdisciplinary field of engineering that focuses on how to design and manage complex engineering projects over their life cycles. Issues such as reliability, logistics, coordination of different teams (requirements management), evaluation measurements, and other disciplines become more difficult when dealing with large or complex projects. Systems engineering deals with work-processes, optimization methods, and risk management tools in such projects. It overlaps technical and human-centered disciplines such as control engineering, industrial engineering, organizational studies, and project management. Systems Engineering ensures that all likely aspects of a project or system are considered, and integrated into a whole. White Swans are the brainchildren of Qualts …”

Quantitative Analysis.— “ … Quantitative Analysis refers to the skills, technologies, applications and practices for continuous iterative exploration and investigation of past business performance to gain insight and drive business, risk and futures planning. Quantitative Analysis focuses on developing new insights and understanding of sustainable business performance based on numerical data, narrative data, alphanumerical data and statistical methods …”

Quant.— “ … A quant is brand of industrial scientist and engineers who applies mathematical model of uncertainty to financial and/or socioeconomic data and complex financial instruments. And a person who also studies the flaws and the limits of these models, understanding that there is a point of breakdown …. A quant has a combined background of applied mathematics, engineering and statistics. A quant spreads the usage of artificial intelligence in today’s markets …. Whether he or she acknowledges it or not, the quant is extremely AWARE of the many critical short-comings of many quantitative strategies (as he is never interested in qualitative analytics), such as their tendency to lead to crowded trades and their underestimation of the likelihood of chaotic, volatile moves in the markets …. Along with Central Bank chairpersons and world’s finance ministers, quants are the first ones to “…elicit…” that the global economy is being “ …affected…” by “ …systemic risks…”, that systemic risk turbo-charged by several corrupted politicians, manipulative economists and beautiful quants that never understand what the tangible corporate theater of operations is [….] Industrial engineering, partly used by so-called Quants, is a branch of engineering dealing with the optimization of complex processes or systems. It is concerned with the development, improvement, implementation and evaluation of integrated systems of people, money, knowledge, information, equipment, energy, materials, analysis and synthesis, as well as the mathematical, physical and social sciences together with the principles and methods of engineering design to specify, predict, and evaluate the results to be obtained from such systems or processes. Its underlying concepts overlap considerably with certain business-oriented disciplines such as operations management. Black Swans are the brainchildren of quants …”

Randomness.— (Randomness means lack of pattern or predictability in events. Randomness suggests a non-order or non-coherence in a sequence of symbols or steps, such that there is no intelligible pattern or combination, as a result of corporate manager’s perpetual MOST-RECURSIVE search for lucrative intangibles in omniverseral: (a) hidden quadrants and (b) ignored flanks and © forgotten angles, and (d) recondite spheres and (e) hermetic theater of operations and (e) unrealized orbits.

Recursiveness.— (pertaining to or using a rule or procedure that can be applied repeatedly, as a result of corporate manager’s perpetual MOST-RECURSIVE search for lucrative intangibles in omniverseral: (a) hidden quadrants and (b) ignored flanks and © forgotten angles, and (d) recondite spheres and (e) hermetic theater of operations and (e) unrealized orbits.

Retrospective.— “ … Retrospective comprises something that is looking back on, contemplating, or directed to the past [….] looking or directed backward [….] Applying to or influencing the past; retroactive [….] looking or directed backwards, esp in time; characterized by retrospection …. applying to the past; retroactive [….] directed to the past; contemplative of past situations, events, etc. [….] looking or directed backward [….] review, revision, another look, reassessment, fresh look, second look, reconsideration, re-evaluation, re-examination [….] Considering a past event or development [….] Something that is chronologically presented pertaining to business tasks, with the utter object to show the trajectory of said business tasks …”

Risk .— “… The quantitative or qualitative expression of possible loss that considers both the probability that an event will occur and the consequences of that event … and/or the likeliness of injury, harm, damage, disruption or loss multiplied by its potential magnitude …”

Serendipity.— Serendipity means a “fortuitous happenstance” and/or “pleasant surprise” and/or “always making discoveries, by accidents and sagacity, of things which they were not in quest of”. And also entails unexpected positive and beneficial accident(s) [….] And the art of finding something unintended [….] the common experience of observing unexpected, anomalous and strategic data and events, which are transformed into the instance and context to develop a new theory or to complement an existing theory [….] And the faculty of making fortunate Technological Breakthroughs and Scientific Discoveries And Innovation Developments by accident, as a result of corporate manager’s perpetual MOST-RECURSIVE search for lucrative intangibles and tangibles in omniverseral: (a) hidden quadrants and (b) ignored flanks and © forgotten angles, and (d) recondite spheres and (e) hermetic theater of operations and (e) unrealized orbits and planes [….] Unexpected Accidental Beneficial Discoveries in Science, Technology, Strategy, Business and Management …”

Scientific Futuring.— “…Scientific Futuring is in place to develop a scientific method for studying the future. Scientific Futuring comprises: 1) an inductive process consisting of a number of accurate observations which have been consolidated, or generalized, into empirical laws or statements of underlying relationships between key variables and 2) A deductive, intuitive process by which the scientific “investigator” places his observations into a larger system of thought, or theory based on fundamental axioms. Scientific Futuring is instituted with the purpose of seizing knowledge of effects through causes. This method of Scientific Futuring, made up of a process employing the classical scientific steps of induction and deduction, and reinforced by additional steps of contextualization and evolutionization, is a battle-plan for study of tomorrow’s evolving world…”

Stargatenessfulness.— (Stargatenessfulness is the quality of conforming to the ability to investigate claims of psychic phenomena with potential corporate for-lucre application, such as ‘remote viewing’, the purported ability to psychically ‘see’ events, sites, or information from a great distance, including those of the environment, industries and specially those of direct and indirect competitors. Taken by Applied Thinkers and Visionary Corporation by the U.S. Federal Government’ and the U.S. Defense Intelligence Agency’s Stargate Project).

System .— “…System comprises the whole compounded of several parts, members elements, components and subsystems, a group of interacting, interrelated, or interdependent elements forming a complex whole, an organized set of interrelated ideas or principles, a naturally occurring group of objects or phenomena, a condition of harmonious and orderly interaction, and an organized and coordinated method; a procedure. System is a set of interacting or interdependent components forming an integrated whole or a set of elements (often called ‘components’) and dynamic relationships which are different from relationships of the set or its elements to other elements or sets. Systems unite and put together elements, components and subsystems toward the entire whole…”

Technology.— “… Technology is instituted in order to solve practical problems (both mild and complex ones) ─ especially in industry, commerce, economy, science, technology, society, and politics (including geopolitics) ─, the methodical practical application of the scientific method, mathematical principles, practical sciences and material used to achieve a commercial or industrial objective and beyond, as well as to achieve practical ends such as the design, manufacture, and operation of efficient and economical structures, machines, processes, and systems …. The profession of and/or the work performed by any engineer …” If you want a briefer definition, please see this: ” … the methodical and systematic application of science in order to solve practical problems …”

Theater of Operation.— “… Theater of Operation is hereby included to mean the four-dimensional coordinate system and beyond it, in which organization’s physical (tangible) and non-physical (intangible) events are located …”

The Eureka Moment.— “ … The Eureka Moment, also known as the ‘…Aha! Moment …’, refers to the common human experience of suddenly understanding a previously incomprehensible problem or concept. The Eureka effect is named after the myth that the Greek polymath Archimedes, having discovered how to measure the volume of an irregular object, leaped out of a public bath, and ran home naked shouting ‘eureka’ (I found it) …”

The Sputnik Moment.— “ … The Sputnik Moment is a point in time in which a country or a society or even a corporation, realizes that it needs to catch up with the apparent technological and scientific gap that exists between it and some other superpower and/or global competitors, increasing its investment efforts into education and innovative R&D&I …”

Transformative and Integrative Risk Management.— “…Transformative and Integrative Risk Management comprises of all activities and initiatives required to seize the optimum degree of risk elimination, mitigation, modulation or control within the constraints of operational effectiveness, time, and cost, attained through the specific application of management, scientific, engineering and mathematical principles throughout all phases of system operation.”

Transformative and Integrative Risk Management.— “Transformative and Integrative Risk Management comprises of all activities and initiatives required to seize the optimum degree of risk elimination, mitigation, modulation or control within the constraints of operational effectiveness, time, and cost, attained through the specific application of management, scientific, engineering and mathematical principles throughout all phases of system operation.”

Troublesomeness.— Troublesomeness is the quality of conforming to the ability to cause trouble, annoyance, or difficulty; vexation.

Un-reconnoiterable Cues.— (Un-reconnoiterable cues refers to un-explorable cues).

Wild Card.— “ … A wild card is a future development or event with a relatively low probability of occurrence but a likely high impact on the conduct of business …”

- @ClubOfINFO — A recent massive leap forward in synthetic life, recently published in Nature, is the expansion of the alphabet of DNA to six letters rather than four, by synthetic biologists – the technicians to whom we entrust the great task of reprogramming life itself.

Breakthroughs such as the above are quite certain to alert more and more people to synthetic biology and its possible consequences. For as long as such breathtaking discoveries continue to be made in this area of research, it is inevitable that latent fears among society will come closer to the surface.
There is likely to be a profound distrust, whether inculcated by religion or by science fiction horror movies and literature, towards the concept of tampering with nature and especially the very building blocks that brought us into existence. While the people with this profoundly negative reaction are not sure what they are warning against, they are motivated by a vitalistic need to believe that the perversion of life is going to provoke hidden – almost divine – repercussions.
Is it really true that no-one should be meddling with something so fundamental to life, or is synthetic biology the science of our century, our civilization’s key to unlimited energy? Whatever the answer may be, the science enabling it already exists and is growing rapidly, and history seems to show that any technology once invented is impossible to contain.
The fact that synthetic base pairs now exist should confirm, for many, the beginning of humanity’s re-engineering of the structures of life itself. As it is unprecedented in our evolution, we are presented with an ethical question and all points of view should be considered, no matter how radical or conservative they are.
It is hard to find a strong display of enthusiasm for the use of synthetic biology as a solution to the world’s greatest problems, even among the transhumanists and techno-progressives. Most of the popular enthusiasm for technological change, particularly the radical improvement of life and the environment through technology, focuses on artificial intelligence, nanotechnology, and things like solar cells as the solution to energy crises. There is not much of a popular case being made for synthetic biology as one of the keys to civilization’s salvation and humanity’s long-term survival, but there should be. The first obstacles to such a case are most likely fear and prejudice.
Even among those theorists who offer the most compelling arguments about self-sustaining technologies and their potential to democratize and change the means of production, enthusiasm for synthetic biology is purposely withheld. Yannick Rumpala’s paper Additive manufacturing as global remanufacturing of politics has a title that speaks for itself. It sees in 3d printing the potential to exorcize some of the most oppressive structural inevitabilities of the current division of labor, transforming economics and politics to be more network-based and egalitarian. When I suggested to Yannick that synthetic organisms – the most obvious choices of technology that will be able to self-replicate and become universally available at every stratum of global society – he was reserved. This was half due to not having reflected on biotechnology’s democratic possibilities, and half due to a principled rejection of “artificial environments”.
Should synthetic biology make people nervous rather than excited, and should be it be rejected as controversial and potentially dangerous rather than embraced as a potentially world-changing and highly democratic technology? The second tendency that results in a rejection of synthetic biology by those who normally go about endorsing technology as the catalyst for social change is the tendency to point to a very specific threat – a humanity-threatening virus.
This second rejection of synthetic biology is easier to respond to than the first, because it is very specific. In fact, the threat is discussed in sufficient depth by synthetic biology’s own leading scientist himself, J. Craig Venter, in his 2013 book Life at the Speed of Light. In anticipation of a viral threat, “bio-terror” is considered the top danger by the US government, but “bio-error” is seen by Venter as an even bigger danger. There is a possibility of individual accidents using synthetic biology, analogous to medical accidents from overdoses. It could involve a virus introduced as a treatment for cancer becoming dangerous (like in the movie, I Am Legend). This is especially possible, if the technology becomes ubiquitous and “DIY”, with individuals customizing their own treatments by synthesizing viruses. However, many household materials and technologies already present the same level of threat to lone individuals, so there is no reason to focus on the popular use of synthetic biology as an extraordinary threat.
A larger scale disaster is far easier to prevent than the death or illness of a lone individual from his own synthetic biology accident. A bio-terror attack, Venter writes, would be extremely difficult using synthetic biology. Synthetic biology is going to give medical professionals the ability to quickly sequence genomes and transmit them on the airwaves to synthesize new vaccines. This would only make it easier to fight against bioterror or a potentially apocalyptic virus, as the threat could be found and sequenced by computers, with the cure being synthesized and introduced almost immediately. Despite this fact that synthetic biology provides the best defense against its own possible threats, it is still important to be balanced in our recognition of the benefits and threats of this technology.
More dangerous than a virus breaking loose from the lab, Venter recognizes the potential for the abuse of synthetic biology by hostile governments. Of most concern, custom viruses could be used as assassins against individuals, whether by governments or conspirators. A cold could be created to have no effect on most people, but be deadly to the President of the United States. All you would need to do is get access to a sample of the President’s genetic material, sequence it, and develop a corresponding virus that exploits a unique weakness in his/her DNA. This danger in particular seems to be more worthy of concern than an apocalyptic virus or devastating bioterrorist attack striking the whole of humanity.
The ethical burden on those who work with synthetic life, as Venter takes from a US government bioethics study, requires “a balance between the pessimistic view of these efforts as yet another example of hubris and the optimistic view of their being tantamount to “human progress” ”. Synthetic biologists must be “good stewards”, and must “move genomic research forward with caution, armed with insights from value traditions with respect to the proper purposes and uses of knowledge.”
However, there is also an undeniable reason to embrace synthetic biology as a solution to many of the world’s most urgent problems. J. Craig Venter’s own words confirm that synthetic life deserves to be included in Yannick Rumpala’s analysis, as a democratic technology that can transform global politics and economics and counter disparity in the world:

“Creating life at the speed of light is part of a new industrial revolution that will see manufacturing shift away from the centralized factories of the past to a distributed, domestic manufacturing future, thanks to 3-d printers.”

There may be a terrible threat from synthetic biology, but it will not necessarily be bio-error or bio-terror. The abuse could come from none other than a very familiar leviathan that has already violated the trust of its citizens before: the supposedly incorruptible United States government. Already, there is an interest in sequencing everyone’s genomes and placing them on a massive database, ostensibly for medical purposes. One cannot help but connect this with the US government’s fascination with tracking and monitoring its own citizens. If the ability to customize a virus to target an individual is true, the killer state will almost certainly maintain the military option of synthetic biology on the table – a possible way of carrying out “targeted killings” around the world in a more sophisticated and secretive manner than ever before.
The threats of synthetic biology are elusive and verge on being conspiracy theories or overused movie plots, but the magnificent potential of synthetic biology to eliminate inequality and suffering in the world is clear and present. In fact, the greatest bio-disaster in the history of the world may be humanity’s reluctance to remanufacture life in order to make more efficient use of the world’s declining natural resources. At the same time, the belief that ubiquitous synthetic biology will threaten life is secondary and distracting, as the true responsibility for unjustly threatening life is likely to always be with the state.

By Harry J. BenthamMore articles by Harry J. Bentham

Originally published on 13 May 2014 at the Institute for Ethics and Emerging Technologies (IEET)

Today’s emerging technologies will be tomorrow’s liberators. Subscribe for similar articles.

White Swan Graphics, Countermeassuring Every Unthinkable Black Swan, By Mr. Andres Agostini — Question: In Corporate Settings, Is There An Outright Countermeassuring White Swan To The Black Swan? Read at http://lifeboat.com/blog/2014/04/White-Swan

Posted in automation, big data, biological, business, complex systems, computing, disruptive technology, economics, education, engineering, existential risks, finance, futurism, information science, innovation, law, law enforcement, lifeboat, science, scientific freedom, security, singularity, sustainability | Leave a Comment on White Swan Graphics, Countermeassuring Every Unthinkable Black Swan, By Mr. Andres Agostini — Question: In Corporate Settings, Is There An Outright Countermeassuring White Swan To The Black Swan? Read at http://lifeboat.com/blog/2014/04/White-Swan

WHITE SWAN GRAPHICS BY MR. ANDRES AGOSTINI. — QUESTION: IN CORPORATE SETTINGS, IS THERE AN OUTRIGHT COUNTERMEASSURING WHITE SWAN TO THE BLACK SWAN? READ at https://lifeboat.com/blog/2014/04/White-Swan

001

002

003

004

005

006

007

008

009

010

012

013

014

015

016

018

019

021022024
025
026

026

030

032

038
001a  from Profitable Challenges

WHITE SWAN GRAPHICS BY MR. ANDRES AGOSTINI. — QUESTION: IN CORPORATE SETTINGS, IS THERE AN OUTRIGHT COUNTERMEASSURING WHITE SWAN TO THE BLACK SWAN? READ at https://lifeboat.com/blog/2014/04/White-Swan

Mr. Andres Agostini

Lifeboat Foundation Worldwide Ambassador: https://lifeboat.com/ex/bios.andres.agostini

The White Swan Treatise at https://lifeboat.com/blog/2014/04/white-swan

The « … The Human Race to the Future … » Worldwide Ambassador at http://amzn.to/19H3qf0 POINT OF CONTACT AND QUERY: www.linkedin.com/in/andresagostini PROFESSIONAL SERVICE: http://ThisSuccess.wordpress.com

White Swan’s Pandora Versus Cassandra Predictions! By Mr. Andres Agostini at https://lifeboat.com/blog/2014/04/white-swan

WHITE

Cassandra: What is going to happen in the World as per the Euro-Asian superpower?

Pandora: First, we have Cold War II and a Preconditions of a Global War of Trade and Commerce in place. Second: Let us hope that switches to ascertain M.A.D. are never turned on.

Cassandra: What is going to happen in Southern Europe’s Public Health-care and Retirement Systems?

Pandora: Those safety nets will be somewhere between insolvency and meagerness and totally downed. And citizens either become inventors and find their own solutions or bestow upon them self-inflicted death sentences.

Cassandra: What is going to happen by 2013?

Pandora: Bots will have human-intelligence level of themselves. And they will be competing for jobs and professional contract services against un-enhanced humans.

Cassandra: What are Ministers of Defense and Intelligentsia Agencies are going to do?

Pandora: They will secure to increase budgets for scientists to bring about extreme bots to make the human soldier a thing of the past.

Cassandra: What is going to happen to major democracies soon?

Pandora: Well, most of them are Plutocracies already. But in pursuing a more strict control of the citizenry they will become Stratocracies, also ruled by Aristocracies and Technocracies.

Cassandra: What is going to happen to the Superrich 1%?

Pandora: The 1% is going to get infinitely more in the zillions. And the 99% is going to become more indignant and chaotic.

Cassandra: What is going to be brought about by techno-snoopying?

Pandora: Police states, all over the place.

Cassandra: Who are going to counter measure economic, political and military dominance in the Pacific Ocean?

Pandora: China and Russia.

Cassandra: Where can I get the whole predictions?

Pandora: Go and read the White Swan at https://lifeboat.com/blog/2014/04/white-swan

Mr. Andres Agostini
Chief Polymath Officer (CPO)
The Worldwide Ambassador at the Lifeboat Foundation at https://lifeboat.com/ex/bios.andres.agostini
POINT OF CONTACT AND QUERY: www.linkedin.com/in/andresagostini
PROFESSIONAL SERVICE: http://ThisSuccess.wordpress.com

AS A CONSULTANT, MANAGER, STRATEGIST AND RESEARCHER, ANDRES WORKS AND HAS WORKED WITH INSTITUTIONS — AND THE RESPECTIVE EXECUTIVES OF SAID ORGANIZATIONS — INCLUDING THOSE ONES SUCH AS:

► Toyota,
► Mitsubishi,
► World Bank,
► Shell,
► Statoil,
► Total,
► Exxon,
► Mobil,
► PDVSA, Citgo,
► GE,
► GMAC,
► TNT Express,
► AT&T
► GTE,
► Amoco,
► BP,
► Abbot Laboratories,
► World Health Organization,
► Ernst Young Consulting,
► SAIC (Science Applications International Corporation),
► Pak Mail,
► Wilpro Energy Services,
► Phillips Petroleum Company,
► Dupont,
► Conoco,
► ENI (Italy’s petroleum state-owned firm),
► Chevron,
► LDG Management (HCC Benefits).
► Liberty Mutual (via its own Seguros Caracas)
► MAPFRE (via its own Seguros La Seguridad)
► AES Corporation (via its own Electricidad de Caracas)
► Lafarge
► The University of Arkansas at Little Rock’s Most Honorable and Respected Professor Dr. Daniel Berleant, PhD.

Mr. Andres Agostini

Chief Polymath Officer (CPO)
The Worldwide Ambassador at the Lifeboat Foundation at https://lifeboat.com/ex/bios.andres.agostini
POINT OF CONTACT AND QUERY: www.linkedin.com/in/andresagostini
PROFESSIONAL SERVICE: http://ThisSuccess.wordpress.com

AS A CONSULTANT, MANAGER, STRATEGIST AND RESEARCHER, ANDRES WORKS AND HAS WORKED WITH INSTITUTIONS — AND THE RESPECTIVE EXECUTIVES OF SAID ORGANIZATIONS — INCLUDING THOSE ONES SUCH AS:

► Toyota,
► Mitsubishi,
► World Bank,
► Shell,
► Statoil,
► Total,
► Exxon,
► Mobil,
► PDVSA, Citgo,
► GE,
► GMAC,
► TNT Express,
► AT&T
► GTE,
► Amoco,
► BP,
► Abbot Laboratories,
► World Health Organization,
► Ernst Young Consulting,
► SAIC (Science Applications International Corporation),
► Pak Mail,
► Wilpro Energy Services,
► Phillips Petroleum Company,
► Dupont,
► Conoco,
► ENI (Italy’s petroleum state-owned firm),
► Chevron,
► LDG Management (HCC Benefits).
► Liberty Mutual (via its own Seguros Caracas)
► MAPFRE (via its own Seguros La Seguridad)
► AES Corporation (via its own Electricidad de Caracas)
► Lafarge
► The University of Arkansas at Little Rock’s Most Honorable and Respected Professor Dr. Daniel Berleant, PhD.