Toggle light / dark theme

Life is an integrated flow of quantum computational processes giving rise to our conscious experience. Based on the ontological model, the Cybernetic Theory of Mind by evolutionary cyberneticist Alex Vikoulov that he expands on in his magnum opus The Syntellect Hypothesis: Five Paradigms of the Mind’s Evolution, comes a new documentary ― Consciousness: Evolution of the Mind.

This film, hosted by the author of the book from which the narrative is derived, is now available for viewing on demand on Vimeo, Plex, Tubi, Social Club TV and other global networks with its worldwide premiere aired on June 8 2021. This is a futurist’s take on the nature of consciousness and reverse engineering of our thinking in order to implement it in cybernetics and AI systems.

Many definitions have been given to consciousness but we still don’t seem to have a widely accepted, uniform one. Part I, What is Consciousness? gives us the most comprehensive definition of consciousness, makes a clear distinction between ‘Mind’ and ‘Consciousness’, and sheds light on the fundamental physics of consciousness. Qualia, cognition and development of the human mind are addressed in this opening part of the documentary.

The late 21st century belongs to Superhumans. Technological progress in the field of medicine through gene editing tools like CRISPR is going to revolutionize what it means to be human. The age of Superhumans is portrayed in many science fiction movies, but for the first time in our species history, radically altering our genome is going to be possible through the methods and tools of science.

The gene-editing tool CRISPR, short for clustered regularly interspaced short palindromic repeats, could help us to reprogram life. It gives scientists more power and precision than they have ever had to alter human DNA.

Genetic engineering holds great promise for the future of humanity. A growing number of scientists including David Sinclair believe that we will soon be able to engineer and change our genes in a way that will help us live longer and healthier lives.

But how much should we really tinker with our own nature? What is the moral responsibility of scientists and humans towards future generations?

With technological advances in molecular biology like CRISPR that allow for specific gene editing approaches, many scientists argue that there are strong potential benefits as well as risks to human genetic engineering.
David Sinclair is a geneticist at Harvard Medical School. He believes it’s possible to unlock the fountain of youth.

The potential uses of such gene editing techniques could range from the treatment of disease to the enhancement of beauty and intelligence.

New discoveries in gene editing technologies are popping up everywhere in the world and experts predict that we will see many more in coming years. Many scientists believe that genetic engineering is the future of our evolution. It provides us with a chance to give ourselves any traits we want, such as muscle mass or eye color. Basically, anything is possible.

Program aims to fortify supply chain by utilizing bioengineering approaches to facilitate REE separation and purification.


Rare Earth Elements (REEs) are a group of 17 similar metals that are critical material components of many DoD systems, including lasers, precision-guided weapons, magnets for motors, and other devices.1 Although the U.S. has adequate domestic REE resources, its supply chain is vulnerable due to dependence on foreign entities for separation and purification of these elements. “Biomining,” an approach that uses microbes to extract or separate target metals like gold or copper from a variety of sources is not yet useful for REEs because of poor specificity and selectivity of the microbes for REEs. The Environmental Microbes as a BioEngineering Resource (EMBER) program aims to leverage advances in microbial and biomolecular engineering to develop a scalable bio-based separation and purification strategy for REEs using under-developed domestic sources.

“The EMBER program will aim to fill a critical DoD supply chain gap” stated Dr. Linda Chrisey, EMBER program manager. “The program will target the development of bioengineered organisms/biomolecular approaches for REE purification, then translate these to practical biomining modules (e.g., biosorbent, biofiltration) that can be integrated with domestic REE sources.”

The four-year program will address two Technical Areas (TAs) and be divided into three phases. The goal of TA1, “Bioengineering for REE Utilization,” is to establish a platform for engineering organisms and/or biomolecules to enable the binding of REEs under harsh conditions. TA2, “REE Biomining” will focus on developing and testing a biomining workflow to purify individual REEs from actual source materials. Teams must propose to both TAs to develop comprehensive, enduring solutions.

No animals were harmed in the production of the synthetic muscle fibers, which are tougher than Kevlar.

Would you wear clothing made of muscle fibers? Use them to tie your shoes or even wear them as a belt? It may sound a bit odd, but if those fibers could endure more energy before breaking than cotton, silk, nylon, or even Kevlar, then why not?

Don’t worry, this muscle could be produced without harming a single animal.

DNA damage by radiation is a concern for space travelers. New experiments on the ISS show that CRISPR gene editing tools can function in space and can potentially be used to mitigate these effects.

Image credit: Norbert Kowalczyk Unsplash

Studying DNA repair is key to future space exploration, which could expose humans to risk of DNA damage caused by radiation. Conditions in space also could affect the way the body repairs such damage, potentially compounding that risk.

Would you wear clothing made of muscle fibers? Use them to tie your shoes or even wear them as a belt? It may sound a bit odd, but if those fibers could endure more energy before breaking than cotton, silk, nylon, or even Kevlar, then why not?

Don’t worry, this muscle could be produced without harming a single animal.

Researchers at the McKelvey School of Engineering at Washington University in St. Louis have developed a synthetic chemistry approach to polymerize proteins inside of engineered microbes. This enabled the microbes to produce the high molecular weight muscle protein, titin, which was then spun into fibers.

Maya Ajmera, President & CEO of Society for Science & the Public and Publisher of Science News, chatted with Ray Kurzweil, an alumnus of the Science Talent Search and a renowned inventor and futurist. Kurzweil also has written five best-selling books, is Cofounder and Chancellor of Singularity University and is a Director of Engineering at Google. We are thrilled to share an edited summary of their conversation.

You are an alum of the1965Science Talent Search. How did the competition impact your life, and are there any particular moments that still stand out for you?

The Westinghouse Science Talent Search was the first time I was recognized nationally. President Johnson had just been elected and we met him at the White House. He told us his goal was that our generation would never see the horrors of war.

One of the most difficult aspects of gene therapy might be ensuring that it gets into the right cells safely so it can have a therapeutic effect. Researchers have now created a new way to deliver various types of RNA cargo to cells, which utilizes one of the human body’s natural proteins to create particles that can bind to RNA. This approach, called SEND, may help reduce any immune response that would be mounted against a gene therapy. The work has been reported in Science.

Current delivery systems are not efficient, may integrate their cargo improperly, and can cause serious immune reactions. “The biomedical community has been developing powerful molecular therapeutics, but delivering them to cells in a precise and efficient way is challenging,” said senior study author Feng Zhang, Ph.D., a core institute member at the Broad Institute, among many other appointments. “SEND has the potential to overcome these challenges.”

Batteries are widely used in everyday applications like powering electric vehicles, electronic gadgets and are promising candidates for sustainable energy storage. However, as you’ve likely noticed with daily charging of batteries, their functionality drops off over time. Eventually, we need to replace these batteries, which is not only expensive but also depletes the rare earth elements used in making them.

A key factor in life reduction is the degradation of a battery’s structural integrity. To discourage structural degradation, a team of researchers from USC Viterbi School of Engineering are hoping to introduce “stretch” into battery materials so they can be cycled repeatedly without structural fatigue. This research was led by Ananya Renuka-Balakrishna, WiSE Gabilan Assistant Professor of Aerospace and Mechanical Engineering, and USC Viterbi Ph.D candidate, Delin Zhang, as well as Brown University researchers from Professor Brian Sheldon’s group. Their work was published in the Journal of Mechanics and Physics of Solids.

A typical battery works through a repetitive cycle of inserting and extracting Li-ions from electrodes, Zhang said. This insertion and extraction expands and compresses the lattices. These volume shifts create microcracks, fractures and defects over time.