Toggle light / dark theme

Is this the guilt-free sports utility vehicle for the animal-loving, environmentally-conscious car enthusiast?

Aston Martin’s new Lagonda — unveiled at the Geneva Motor Show — is electric-powered and… vegan.

The Britain-based manufacturer says the luxury interior of the long, sleek vehicle is leather-free.

Read more

A new method for analysing the entanglement of scrambled particles could tell us how the Universe still keeps track of information contained by particles that disappear into black holes. It won’t get our quantum information back, but it might at least tell us what happened to it.

Physicists Beni Yoshida from the Perimeter Institute in Canada and Norman Yao from the University of California, Berkeley, have proposed a way to distinguish scrambled quantum information from the noise of meaningless chaos.

While the concept promises a bunch of potential applications in the emerging field of quantum technology, it’s in understanding what’s going on inside the Universe’s most paradoxical places that it might have its biggest pay-off.

Read more

Canadian researchers have developed a laser probe that uses changes in light patterns to detect melanoma, the deadliest form of skin cancer.

The device works on the principle that light waves change as they pass through objects. Cancerous cells have a different physical profile to healthy cells, and the researchers designed a system that can detect these patterns instantly. By determining the optical polarisation of different skin lesions, the team was able to distinguish cancerous from non-cancerous tissues.

“With skin cancer, there’s a saying that if you can spot it you can stop it – and that’s exactly what this probe is designed to do,” said researcher Daniel Louie, a PhD student who constructed the device as part of his studies in biomedical engineering at the University of British Columbia (UBC).

Read more

The authors’ subsequent in-depth analysis revealed a much more complex pattern than a general inhibition of neural activity. They found that the extent of the influence of neurons on other neurons was related to how they responded to certain features of visual stimuli, such as orientation and temporal frequency. When a neuron was activated, neurons that were tuned to respond to similar features to that neuron were more strongly suppressed than were neurons with a different tu…


The contribution of a single neuron to brain function might seem negligible. But a map of the influence of single neurons reveals a complex pattern that prevents redundancy and enables clear messaging. Inhibitory and activating effects of a neuron on its neighbours.

Read more

Google’s Doodle on Thursday marked the 97th birth anniversary of Russian mathematician Olga Ladyzhenskaya. She was known for her work on partial differential equations and in the field of fluid dynamics, which led to several developments in the study of fluid dynamics and paved the way for advances in weather forecasting, oceanography, aerodynamics, and cardiovascular science.

Read more

A team of scientists in the US has brought us a huge step closer to a superconductor capable of working at room temperature.

If humankind were to find a way to construct a large-scale superconductor that could work at room temperature, the way our energy grids and computers are built – and many other areas of daily life – would be fundamentally changed.

The phenomenon is the lack of electrical resistance and is observed in many materials when they are cooled below temperatures of around −180 degrees Celsius, making them rather limited in their application. However, a team from George Washington University in the US has revealed something that could help us finally reach what is one of the most sought-after achievements in modern physics.

Read more

Then the 2017 DoD disclosure occurred, directly contradicting the findings in the Condon Report. We realized we had not discovered all there was to discover — not by a long shot.

AATIP succeeded where others failed simply because our understanding of the physics finally caught up to our observations.


Today, much of our government’s business is conducted behind closed doors, and mostly for good reason.

There are numerous secret programs, secret agencies, secret committees of Congress, secret laws, and even a secret courtroom. Secrecy allows our government to collect and share information, and even make decisions that otherwise could fall into enemy hands or be exploited.

Ultimately, the purpose of keeping things secret in the government is to protect sources and methods and ensure the flow and integrity of information is maintained so decision-makers can make decisions with the very best data available. It’s no surprise that governments will go to great lengths to protect the information they consider sensitive. In fact, the more sensitive information is perceived, the more it is protected.

Read more