Toggle light / dark theme

People left blind by retinal degeneration have one option: electronic eye implants. Neuroscientists have now developed an alternative: gene therapy that, in tests, restored vision in blind mice. A gene for green opsin delivered via virus gave blind mice enough sight to discern patterns on an iPad at a resolution sufficient for humans to read. Given existing AAV eye therapies already approved, this new therapy could be ready for clinical trials in three years.

Read more

As the World Wide Web marks its 30th birthday on Tuesday, public discourse is dominated by alarm about Big Tech, data privacy and viral disinformation. Tech executives have been called to testify before Congress, a popular campaign dissuaded Amazon from opening a second headquarters in New York and the United Kingdom is going after social media companies that it calls “digital gangsters.” Implicit in this tech-lash is nostalgia for a more innocent online era.


Let’s not let artificial intelligence put society on autopilot.

Read more

The realization of so-called topological materials—which exhibit exotic, defect-resistant properties and are expected to have applications in electronics, optics, quantum computing, and other fields—has opened up a new realm in materials discovery.

Several of the hotly studied topological materials to date are known as . Their surfaces are expected to conduct electricity with very little resistance, somewhat akin to superconductors but without the need for incredibly chilly temperatures, while their interiors—the so-called “bulk” of the material—do not conduct current.

Now, a team of researchers working at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) has discovered the strongest topological conductor yet, in the form of thin crystal samples that have a spiral-staircase structure. The team’s study of crystals, dubbed topological chiral crystals, is reported in the March 20 edition of the journal Nature.

Read more

Astronomers found a pulsar hurtling through space at nearly 2.5 million miles an hour — so fast it could travel the distance between Earth and the Moon in just 6 minutes. The discovery was made using NASA’s Fermi Gamma-ray Space Telescope and the National Science Foundation’s Karl G. Jansky Very Large Array (VLA).


“Thanks to its narrow dart-like tail and a fortuitous viewing angle, we can trace this pulsar straight back to its birthplace,” said Frank Schinzel, a scientist at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico. “Further study of this object will help us better understand how these explosions are able to ‘kick’ neutron stars to such high speed.” Schinzel, together with his colleagues Matthew Kerr at the U.S. Naval Research Laboratory in Washington, and NRAO scientists Dale Frail, Urvashi Rau and Sanjay Bhatnagar presented the discovery at the High Energy Astrophysics Division meeting of the American Astronomical Society in Monterey, California. A paper describing the team’s results has been submitted for publication in a future edition of The Astrophysical Journal Letters.

Read more

In February, the CMS and MoEDAL collaborations at CERN signed an agreement to hand over to MoEDAL a section of the LHC beam pipe that was located inside CMS between 2008 and 2013. The delicate object, 6 metres long and made of beryllium, will now be sliced and fed into a highly precise magnetic sensors in order to allow MoEDAL to look for magnetic monopoles: hypothetical particles with only a single magnetic pole – north or south – unlike north-south dipoles we are familiar with.

Paul Dirac posited the existence of magnetic monopoles in 1931, and, although never observed, they could be produced in collisions within the LHC. They would not travel very far after being produced, binding with the beryllium nuclei of the beam pipe and remaining there awaiting discovery.

The MoEDAL collaboration will cut the beam pipe at a special facility at the Centre for Particle Physics at the University of Alberta in Canada and ship the pieces back across the Atlantic to ETH Zurich in Switzerland to look for electromagnetic anomalies in them. Many theories attempting to unify all of the known forces into a single force (so-called “Grand Unified Theories”) require the existence of monopoles and finding them could open the door to all-new physics.

Read more

Carbon monoxide detectors in our homes warn of a dangerous buildup of that colorless, odorless gas we normally associate with death. Astronomers, too, have generally assumed that a build-up of carbon monoxide in a planet’s atmosphere would be a sure sign of lifelessness. Now, a UC Riverside-led research team is arguing the opposite: celestial carbon monoxide detectors may actually alert us to a distant world teeming with simple life forms.

“With the launch of the James Webb Space Telescope two years from now, astronomers will be able to analyze the atmospheres of some rocky exoplanets,” said Edward Schwieterman, the study’s lead author and a NASA Postdoctoral Program fellow in UCR’s Department of Earth Sciences. “It would be a shame to overlook an inhabited world because we did not consider all the possibilities.”

In a study published today in The Astrophysical Journal, Schwieterman’s team used computer models of chemistry in the biosphere and to identify two intriguing scenarios in which carbon monoxide readily accumulates in the atmospheres of living planets.

Read more

Researchers at Caltech have designed a way to levitate and propel objects using only light, by creating specific nanoscale patterning on the objects’ surfaces.

Though still theoretical, the work is a step toward developing a spacecraft that could reach the nearest planet outside of our solar system in 20 years, powered and accelerated only by light.

A paper describing the research appears online in the March 18 issue of the journal Nature Photonics. The research was done in the laboratory of Harry Atwater, Howard Hughes Professor of Applied Physics and Materials Science in Caltech’s Division of Engineering and Applied Science.

Read more